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Conversion Factors,
Non-SI to S| Units of
Measurement

Non-SI units of measurement used in this report camireected to S units
as follows:

Multiply By To Obtain

degrees 0.0174533 radians

feet 0.3048 meters

inches 2.54 centimeters

feet per second 30.48 centimeters per second
pounds (force) per square foot 0.04788 kilopascals

pounds (force) per square foot 478.802631 dynes per square centimenter
pounds (mass) per cubic foot 0.1570873 kilonewtons per cubic meter
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1 Introduction

Purpose

The purpose of the research effort leading to this report was to develop, test,
and illustrate procedures that can be used by geotechnical engineers to assign
conditional probabilities of failure for existing levees as functions of floodwater
elevation. Such functions are in turn to be used by ecet®mhen estimating
benefits to be derived from proposed levee improvements.

Limitations of Engineering Reliability Analysis
Accuracy of probabilistic measures

Before proceeding, it is important to define a context in which to place engi-
neering reliability analysis and its relationship to flood control levees. The appli-
cation of probabilistic analysis in geotechnical engineering and other areas of
civil engineering is still aemeging technology. Much experience with such
procedures remains to be gained, and the appropriate form and shape of
probability distributions for the relevanamameters are not known with certainty.
The methods described herein should not be expected to provide “true,” or
"absolute” probability-bfailure values but can provide consistent measures of
relative reliabilitywhen reasonable assumptions are empldyedh comparative
measures can be used to indicate, for example, which reach (or length) of levee,
which typical section, or which alternative design may be more reliable than
another. They also can be used to determine which of several performance modes
(seepage, slope stability, etc.) governs the reliability of a particular levee. All of
the levee reaches analyzed are considered independent and unrelated.

Calibration of procedures

Any reliability-based evaluation must balibrated i.e., tested against a
sufficient number of well-understood engineering problems to ensure that it pro-
vides reasonable results. Performance modes known to be problematical (such as
seepage) should be found to have a lower reliability than those for which prob-
lems are seldom observed; larger and more stable sections should be found to be

B-11
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more reliable than smaller, less stable sections, etc. This study provides a begin-
ning point on such calibration studies by performing example analyses on two
hypothetical levee sections. As additional analyses are performed, by both
researchers and practitioners, on a wide range of real levee cross sections using
real data, it is inevitable that adjustments and refinements in the procedures will
be required.

Application to economic analysis

When the developed functions are used in an economic analysis, one may
perceive a greater degree of precision than realgtsxiotunlike long-term
projections of uncertain sts and benefits. Users are @aned that functions
developed using the presented methods still retain some inherent uncertainty in
the absolute sense. Nevertheless, they also contain more information than deter-
ministic approaches to the same problem. The use of a consistent probabilistic
framework, with personal judgment checks for reasonableness, should have the
advantage and appeal of consistency when compared to the alternative method of
trying to identify a single flood elevation at which a levee changes from being
reliable to unreliable.

Background

When the Corps of Engineers proposes construction of new flood control
levees or improvement of exisg) levees (typically by raising the height), eco-
nomic studies are required to assess the relative benefitsstadtithe work.
Where an existing levee is already present, the project benefits accrue from a
difference in the degree of protection. Economic assessment of the levee
improvement in turn requires angneering determination of the probable level
of protectionafforded by the exigtg levee.

Past practice

In the past, existing levees that had not been designed or constructed to Corps
of Engineers' standards were sometimes, if not often, taken to be nonexistent in
economic analysis or takenaéford protedbn to some low and rather anaity
elevation. This is no longer permitted; cost-benefit studies for water resource
projects are increasingly being cast in a probabilistimework wherein it is
recognized that neither €13 nor benefits have precise, predictable values, but
rather can assume a range of values associated with a range of likelihoods. Hence,
an existing levee is considereddtiford protedon with some associated
probability.
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Current practice for navigation rehabilitation studies

For similar economic studies involving the rehabilitation of Corps’ naviga-
tion locks and dams, possible adverse events that would demand expenditures
(e.g. sliding of a lock monolith that would impede navigation) are now analyzed
in a probabilistic framework. Investments in rehabilitation work to forestall
adverse structural performance are evaluated based on the reliability of compo-
nents, the probability of adverse performance, and the probable cost of the conse-
guences. Several studies have been conducted to develop procedures (Wolff and
Wang 1992a, 1992b; Staon and Wilson, Inc., and Wolf©994) and to promul-
gate guidance (ETL110-2-532, U.S. Army Corps &hgineersl992) for prob-
abilistic analysis of hydraulic structures.

The Conditional Probability of Failure Function

For an existing levee subjected to a flood, the probability of faijucan be
expressed as a function of the floodwater elevation and other factors including
flood duration, soil strength, permeability, embankment geometry, foundation
stratigraphy, etc. This study will focus on developingcireditional probability
of failure function for the floodwater elevation, which will be constructed using
engineering estimates of the probability functions or moments of the other
relevant variables.

The conditional probability of failure can be written as:

Pr, = Pr(failure|FWE) = f (FWE, X, X,,..X,) 1)

In the above expression, the first term (denoting probability of failure) will be
used as a shorthand version of the second term. In the second term, the symbol
“I" is readgivenand the variableWE s the floodwater elevation. In the third
term, the random variable§ throughX, denote relevant parameters such as soil
strength, permeability, top stratum thickness, etc. Equation 1 can be restated as
follows: “The probability of failure, given the floodwater elevation, is a function
of the floodwater elevation and other random variables.”

Two extreme values of the fummb can be readily estimated by engineering
judgment:

a. For floodwater at the same level as the landside toe (base elevation) of
the leveeP; = 0.

b. For floodwater at or near the levee crown (top elevati®n),1.00.
It may be argued that the probability of failure value may be something less
than 1.0 with water at the crown, as additional protection can be provided by

emergency measures. The qigsbf primary economic interest, however, is the
shape of the function between theseaxts. Quantiing this shape is the focus
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of this study; how reliable might the levee be for, say, a 10- or 20-year flood event
that reaches half or three-quarters the height of the levee?

Reliability (R) is defined as:

1-P; (2

hence, for any floodwater elevation, the probability of failure and reliability must
sum to unity.

For the case of floodwater partway up a le¥eguld be very near zero or
very near unity, depending on engineering factors such as levee geometry, soil
strength and permeability, foundation stratigraphy, etc. In turn, these differences
in the conditional reliability function could result in very different economic
scenarios. Four possible shapes of the reliability versus floodwater elevation are
illustrated in Figure 1.

As illustrated by these example curves, the conditional probability of failure
function could have a wide range of shapes. For a “good” levee, the probability of
failure may remain low and the reliability remain high until the floodwater eleva-
tion is rather high. In contrast, a “poor” levee may experience greatly reduced
reliability when subjected to even a small flood head. It is hypothesized that
some real levees may follow the intermediate curve, which is similar in shape to
the “good” case for small floods, but reverses to approach the “poor” case for
floods of significant height. Finally, a straight line function is shown in Figure 1,
representing a linear relation between reliability and flood height. Although such
a linear approximation is shown in current Corps guidance (Policy Guidance
Letter No. 26, U.S. Army Corps of Engine@&91),linearity would not be
expected to be the general case.

R eliability

"good" levee _—
~
s
ke
- —

"poor” levee

Flood water

Elevation
Levee

0.00 1.00

Probability of Failure

Figure 1. Possible reliability versus floodwater elevation functions for existing
levees
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Study Approach

To assess the differences in benefits between an existing levee and a pro-
posed improved levee, an economist desires the engineering assessment of the
levee reliability quantified in a probabilistic form such as Figure 1. However,
geotechnical engineers are commonly much better versed in deterministic meth-
ods than in probabilistic methods, and are generally more experienced and com-
fortable designing a structure to be safe with some appropriate conservatism than
when making numerical assessments of the condition of existing and perhaps
marginal structures. To provide some initial methodology for the latter problem,
the approach of this study is to:

a. Review the performance modes of concern to existing levees loaded by
floods and the related deterministic models for assessing performance.

b. Review the use of probabilistic methods in geotechnical engineering,
hydraulic structures, and related areas.

c. Recommend procedures for developing reliability curves or conditional
probability of failure functions similar to Figure 1 that are sufficiently
simple for use in practice with limited data and a modest level of effort,
but reflect a geotechnical engineer’s understanding of the underlying
mechanics and uncertainty in tip@verning @rameters.

d. Test and illustrate the procedures through two comprehensive example
problems.

B-15
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2 Current Corps of Engineers’
Guidance

In this chapter, current Corps of Engineers' guidance regarding levee plan-
ning and design is reviewed in order to begin to define the component parts of,
and the constraints on, a probabilistic procedure to evaluate existing levees. One
policy letter has been issued which defines a beginning point for these studies:

Policy Guidance Letter No. 2Benefit Determination Involving Existing
Leveeq23 Dec. 1991).

A second document, Engineer Manual (EM)L0-2-1913Design and Con-
struction ofLeveeqU.S. Army Corps of Engineefl®78), is the primary source
of Corps policy on the engineering aspects of levee design. However, probabilis-
tic methods are not considered in this engineering manual. In addition to the EM,
there exists &oluminous collection of research reports, flood performance
reports, and Division regulations, (all developed by the Corps), as well as journal
papers and reference books, that deal with the analysis and design of levees.

Policy Guidance Letter No. 26, Benefit
Determination Involving Existing Levees
(23 Dec 1991)

This letter sets forth the need (of the planner to receive from the engineer) for
a function relating levee reliability to floodwater elevation, or at least two points
on this function. Several specific items in the letter are especially relevant to the
present study. These are quoted below and followed hymentary.

Quote: Investigations.. involing the evaluation..of existingévees
and the related effect on the economic analysis shall use a systematic
approach to resolving indeterminate, or arguable, degrees of reliability.

Comment: This language sets forth the reguient for applyng the
principles of reliability analysis to the problem.
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Quote: Studies..will focus on the sources of uncertaintysurface
erosion, internal erosion (piping), underseepage, and slides...

Comment: This wording summarizes the most commonly expected
modes of adverse performance prior to overtopping. These will be
considered in the developed methods.

Quote: The question to be answered is: what percent of the time will a
given levee ithstand water at height x?

Comment: This wording provides the specific rearirent for
developing the conditional probability of failure function defined in
Chapter 1.

Quote: ...comnands..(i.e. @rps district and division offices) making
reliability determinations should gather information to enable them to
identify two points. Thehighest vertical elevation on thevee suclthat

it is highly likely that thedvee wuld not fail if the water surface would
reach this ével...shall be referred to as the Probable Non-Failure Point
(PNP)... The lowest viécal elevation on thedvee sucthat it is highly
likely that the évee wuld fail... shall be referred to as the Probable
Failure Point PFP).. As used herehlighly likely" means 85+ percent
confidence.

Comment: The definition of two specific points, the PNP and R,
implies the assumption of linearity noted later in the letter. The defined
levels of reliability (0.85/ 0.15 and 0.15 / 0.85) assigned to these points,
along with illustrated definitions (Figure 2a), permit an economist, in the
absence of any further engineering analysis, to quantify reliability as a
linear function based on two points derived from engineering analysis or
engineers' intuition and judgment. The engineer needs only to, by some
means, identify floodwater elevations for which he or she considers the
levee to be 15 and 85 percent reliable.

Quote: The requirement that as the water surface height increases the
probability of failure increases, incorporates the reasonable assumption
that as thedvee is morand more stressed, it is more and more likely to
fail.

Comment: While this would often be the case, it should be noted that
there may be some cases, notably riverside slope stability, where a levee
may be more reliable or safe when loaded with floodwater than before or
after flooding.

Quote: If the form of the probability distribution is not knownljreear

relationshipas shown in the enclosed example, is egeptable
approach for calculating the benefits associated with the existiveek.
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Comment: The assumption of linearity is certainly expedient, and is the
least-biased assumption in a case where two and only two points on a
function are known and no other information is present. However, the
assumption of linearity may or may not lmeeptable once some

additional informations known. One of the objectives of this research is
to determine what is in fact a reasonable function shape based on the
results of some engineering analyses for typical levee cross sections and
typical parameter values.

The attachment to the Policy Guidance Letter provides an illustration of the
assumed linear conditional probability of failure function. In Figures 2a, 2b, and
2c, respectively, of this report are sketched the linear version, a trilinear version
that could be extended from the linear version, and the general curves from Fig-
ure 1. The latter have been redrawn to sRowthe dependent variable, on the
y-axis. In the Policy Guidance Letter, the shape of the curve below the 0.15 value
and above the 0.85 value is not defined; the tri-linear version shown is merely a
representation of one possible interpretation. It will be seen from the results of
the example analyses that the conditional-probabififigiture functions
generally take the shape of the middle curve in Figure 2c and can be approxi-
mated by a piecewidmear approach using three or moreqgas similar to
Figure 2b.

EM 1110-2-1913, “Design and Construction of
Levees”

The current primary source of levee design guidance in the Corps of Engi-
neers is EM 1110-2-191Besign and Construction aeveeqU.S. Army Corps
of Engineerd978). Guidance in EML110-2-1913 relevant to the relikity
assessment of existing levees includes the following:

a.

Q tests (UU tests) are renmended for determining tisérength of
foundation clays

Q, R, and S tests (UU, CU, and CD tests) aremewended for deter-
mining strength of borrow materials compacted to water contents and
densities consistent with expected field compaction.

For familiar foundation conditionsindrained strength of fine-grained

soil may be estimated from consolidation stresses and Atterberg limits
(c/p =f(PI1)) and drained strength may be estimated from Atterberg limits
data ¢' =f(PI)) .

Strength of pervious soilss estimated from S (CD) tests on similails
or correlations such as those given by NAVFAC DM-7.

Permeability of pervious soilsis estimated from grain size information,
specifically D, size.
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f. Berms of 40-ft width (riverside) to 100-ft width (landside) are recom-
mended to be left at natural ground elevation between the levee and
borrow areas.

g. Atleast 2 ft ofimpervious covershould be left over pervious materials
in borrow areas.

h. Althoughunderseepage controis discussed, no criteria are given. The
reader is referred to TM 3-424 (U.S. Army Corp&afjineersl 956).

i. Through-seepageand defensive works such as toe drains and internal
drains are described; however, no design criteria are presented and it is
noted that provision of such defenses is usually uneconomical. Under-
seepage and through-seepage for dams are discussedliblBh2-

1901, “Seepage Analysis and Control for Dams” (U.S. Army Corps of
Engineersl986). A deign procedure for toe berms to provide stability
against through-seepage for sand levees has been developed by Schwartz
(1976) and the Rock Island District.

j. A 1V:2.5H slope is considered the steepest that camalrgained with
mowing equipment.

k. Freeboard (crest height above design flood) is maooended to be at
least 2 ft in agricultural areas and 3 ft in urban areas, with additional
height in critical areas.

I.  Crown width is recommended to be a minimum width of 10 to 12 ft for
floodfighting operations.

m. Slope stability analysesnay be in accordance with the Modified
Swedish Method or the wedge method from EM0-2-1902, or the
simpler Swedish Slide Method (ordinary method of slices). It would be
expected that current practice may also be to use Spencer's method from
computer programs UTEXAS2 or UTEXAS3 and not to use the simpler
Swedish Slide Method. In the EM, five stability cases are identified; of
these, Case | (end-of-construction) and Case V (earthquake) are not con-
sidered of interest for economic assessment of existing levees; the
remaining cases (sudden drawdown, intermediate river stage, and steady
seepage) are to be considered.

n. Embankment construction deficienciedeading to poor performance are
summarized in Table 7-2 of the EM. Relevant items include organic
material not stripped from the foundation, highly organic fill, excessively

1 Atable of factors for converting non-Sl units of measurement to Sl units is presented on
page B-11.

! personal Communication, 1993, S. Zaidi, U.S. Army Engineer District, Rock Island; Rock Island,
IL.
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wet or dry fill, pervious layers through the embankment, and inadequate
compaction.

Erosion protection for riverside slopesis discussed in general terms,
but no quantitative criteria are given except where riprap is to be used,
where another EM is referenced.

Components of an Improved Probabilistic
Assessment Procedure

The current guidance for assessing the reliability of existing levees essentially
consists of thedilowing:

a.

Using the template method and/or slope stability analysis to determine
stable slopes that meet accepted criteria.

Defining the PNP anBFP from these slope stiitly considerations

Adjusting the PNP anBFP, if recessary, by some judgmental means,
based on the sum total of information gleaned from the field inspection.

It is proposed that a more rational and consistent assessment procedure
should include the following components.

a.

Develop a set afonditional probability-of-failure versus floodwater
elevation functions,one for each of the following performance
considerations:

(1) Underseepagausing established Corps methods (closed-form equa-
tions or numerical methods such as program LEVEEMSU) and
engineering reliability analysis. Geometry may be based on field
surveys, minimal borings, and geologic experience; permeability
values may be based on correlations with grain size and experience.

(2) Slope stability for shat-term conditions, where undrained
strengths related to consolidation stresses are used for impervious
materials and drained strengths for pervious materials, using a slope
stability program and engineering reliability analysis. Strengths may
be based on field data where available or on correlations and experi-
ence for preliminary studies.

(3) Slope stability for long-term conditions, where flood duration is
expected to be sufficiently long that pore pressures adjust to flood
conditions, using drained strengths, infinite slope analysis or slope
stability programs, and engineering reliability analysis. Strengths
may be based on correlations and experience.
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(4)

(5)

Through-seepagdeading to internal erosion (piping) orrface

erosion of the landside slopEor sand levees, several methods are
considered in Chapter 9; these can likely be further refined based on
additional studies. Results may be modified based on engineering
judgment and observations from the field inspection regarding mate-
rials, geometry, vegetation in the levee, crown width, likelihood of
animal burrows, cracks, roots, defects, etc.

Surface erosiondue to current and wave attack on the riverside
slope, using engineering judgment and observations from the field
inspection regarding soil cover, vegetative cover, rivaratteris-

tics, wave exposure, etc. As techniques are further developed, these
analyses can be based on probabilistic definitions of current veloci-
ties, wave properties, and the properties of levee cover materials.

Systematically combine these functionsito one composite
conditional-probability-of failure function for a given floodwater
elevation, using@epted methods from probability theory.

Using the results of steps a and b for a few selected levee reaches,
incorporate length effectsto estimate the conditional-probability-of-
failure function for the entire levee system.

Such a schemeilibe developed and illustrated in Chapters 4 through 11.
Before doing so, related research work by others will be briefly reviewed in

Chapter 3.
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3 Related Research

Before developing the procedures and examples herein, a brief review of the
engineering literature on levees, their primary modes of performance (i.e., slope
stability, seepage, etc.), and the application of probabilistic methods thereto was
made to provide a basis for model development and to take advantage, if possible,
of previous work in the field. This section summarizeent (wihin the past
20 years) work relevant to the topic. It is not intended to be a comprehensive
review of levee engineering. In making the review, it became clear that nearly all
work on levees and flood control embankments published in English derives from
the experiences of three sources: the Corps of Engineers in the United States,
Dutch engineers involved in sea dike construction, and Czech engineers involved
in protection from flooding along the Danube.

Comprehensive Works

Peter (1982), iCanal and Rivet.eveesprovides the most complete and
recent referencedok treatise on levee design, based on work in the former
Czechoslovakia. Notable among Peter’s work is a more up-to-date and extended
treatment of mathematical and numerical modeling than in most other references.
(His numerical treatment of the underseepage problem was part of the inspiration
for the numerical approach used in LEVEEMSU.) Peter also considers under-
seepage safety as a function of particle size and size distribution, and not just
gradient alone. Although Peter’s work was not directly used in this study, it bears
consideration and re-review as the probabilistic approach to levee assessment is
further extended and developed by the Corps of Engineers.

Vrouwenvelder (1987), iRrobabilistic Design of Flood Defensgsovides
a very thorough treatise on a probabilistic approach to the design of dikes and
levees in the Netherlands. At this time, the report does not have the status of a
code, but reviews the status of research activities and provides worked examples
illustrating how dike design can be cast as a risk mamagt problemHigh-
lights of Vrouwenvelder's work potentially relevant to this effort include the
following:
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a. ltis recognized thagxceedance frequency of the crest elevation is not
taken as the frequency of failure there is some probability of failure for
lower elevations, and there is some probability of no failure or inundation
above this level if an effort is made to raise the protection.

b. A problem-specifigeview of probabilistic conceptssuch as event trees,
fault trees, reliability analysis (limit state, performance function, etc.),
and series and parallel systems is provided.

c. In his examplegleven parameters are taken as random variables
which are used in conjunction with relatively simple mathematical
physical models.

d. Performance modesonsidered are overflowing and overtopping,
macro-instability (deep sliding), micro-instability (shallow sliding or
erosion of the landside slope due to seepage), and piping (as used,
equivalent to underseepage as termed by the Corps).

e. Aside from overtopping, pipingiiderseepagiis found to be the
governing modefor the section studied; slope stability is of little
significance to probability of failure.

f. Surface erosiondue to wave attack or parallel currentads
considered

g. For analysis ofmacro-instability (deep sliding), the Bishop method is
used, and previous data from Alon4®716) is cited thahdicates pore
pressure and cohesion dominate the uncertainty. This is consistent with
findings of this writer in the study of Corps' dams (WaBB5, 1989).

h. For analysis omicro-instability (shallow landside sloughing), a limit
equilibrium derivation, essentially equivalent to the "infinite slope”
method of EM1110-2-1902 (U.S. Army Corps Bingineersl970) is
used.

i. For analysis of pipinguhderseepagg the Lane and Bligh creep ratio
approaches were originally used and then supplanted by an empirical
model test procedure that incorporates tgg D  size and coefficient of
uniformity of the foundation sands. Research is under way toward the
development of a grain-transport model and the consideration of time-
dependent effects.

j-  The"length problem" (longer dikes are less reliable than equivalent
short ones) is discussed.

k. An exampleprobabilistic design is provided for a 20-km-long river dike
constructed of sand with a cover of clay. Random variables include:
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Water height and duration

Soil permeabilityk

Soil friction angle

Soil cohesiort’

Equivalent permeability of the (top blanket) clay.,

Equivalent thickness of the (top blanket) aly,

Equivalent leakage factor of the clay fachg=k, .,/ d

Model uncertainty factor for piping, based on Lane's creep ratio

I.  Theprobabilistic procedure is aimed at optimizing the height and
slope angle of new dikesvith respect to total costs for constiantand
expected losses, including property and life. Macro-instability (slope
failure) of the inner slope was found to have a low risk, much less than
8 x 10* per year. Piping was found to be sensitive to seepage path
length; probabilities of failure varied but were several orders of magni-
tude higher (16 to 1® pera®. Micro-instabity (landside sloughing
due to seepage) was found to have very low probabilities of failure.
Based on these results, it was determined that only overtopping and
piping need be considered in the combined reliability evaluation.

Slope Stability

Termaat and Calle (1994) describediés made to evaluate the short-term
acceptable risk of slope failure of levees being reconstructed along rivers in
Holland. Using a slope stability analysis procedq@alle 1985) that considers a
random field model of spatial fluctuation of shear strength combined with a
Bishop type slope stability model cast in a second-moment probabilistic analysis,
the factor of safety is determined as a Gaussian random function in the direction
of the length of the levee. The expected value, standard deviation, and auto
correlation function for the factor of safety are determined by the random field
statistics of the shear strength functions. From these, estimates of the probability
of occurrence of a zone where the factor of safety is below 1.0 somewhere along
the slope axis can be obtained along with an indication of the width of such a
zone. The authors conclude that probabilities of failure for the end-of-
construction condition are on the order of 2@®, which is consistent with the
findings of a number of other researchers. Although the spatial correlation
considerations used by Termaat, Calle and others are beyond the scope of this
preliminary study of levee reliability, these are important factors that should be
considered as the methodology is further developed.

Underseepage, Through-Seepage, and Piping

Calle et al. (1989), all with Delft Geotatics in The Netherlands, developed
a probabilistic procedure for analyzing the likelihood of piping beneath sea dikes
and river levees. Whereas Corps models for underseepage (U.S. Army Corps of
Engineersl956) are based on consid@rats of equilibrium ecessary to initiate a
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sand boil, Calle's model considers the dynamic equilibriecessary to

accelerate or terminate er@s and material m@ment once pipg has initiated.

The latter phenomenon is related to the creep ratio, originally defined by Bligh
(1910) and Lane (1935). The critical creep ratio defines a limit state which
explicitly depends on geometrical and physical parameters of the aquifer and its
sand material. These parameters, which are modeled as seven random variables
and one deterministic variable, include thegD  angyD  grain sizes, the perme-
ability, the length of the structure, and the soil friction angle. Using the Hasofer-
Lind (1974) relialtity formulation, the reliability index can be calculated for a
levee and foundation system under consideration. This in turn is used to calcu-
late the partial factors of safety on the creep ratio necessary to make the
probability of piping small relative to the annual risk of overtopping (1 in 12,500
for the Dutch structures considered). In doing so, it was found that creep ratios
on the order of two-thirds those recommended by Bligh would provide adequate
reliability against uncontrolled mement of material.

Multiple Modes of Failure

Duckstein and Bogardi (1981) applied religyptheory to levee design,
considering the combined effects of overtopping, boiling, slope sliding, and wind
wave erosion. However, specific models for geotechnical aspects such as boiling
or slope sliding are not developed in detail. Instead, each performanceimode
characterized by a critical ight H, for which failure would occur, and thé
values are taken as a set of random variables. The combined probability is
obtained as a union of the conditional probabilities, similar in concept to the
scheme used in Chapter 11 of this report.

Duncan and Houstord1981) summarize gties performed for the
Sacramento District to estimate failure probabilities for California levees
constructed of a heterogeneous mixture of sand, silt, and peat, and founded on
peat of uncertain strength. Stability failure was analyzed using a horizontal
sliding block model driven by the riverside water load. The factor of safety is
expressed as a function of the shear strength, which is a random variable due to
its uncertainty, and the water level, for which there is a defined anragsgdex
ance probability. Using enentary probality theory, values for the annual
probability of failure for 18 islands in the levee system were calculated by
numerically integrating over the joint events of high water levels and insufficient
shear strength. At this point, the obtained probability of failure values were
adjusted based on several practical considerations; first, they were normalized
with respect to length of levee reach modeled (longer reaches should be more
likely to have a failure) and secondly, they were adjusted from relative probability
values to more absolute values by adjusting them with respect to the observed
number of failures. These practical cqutseare of gnificance to many or most
ongoing developments in applying probabilistic procedures to practical problems
by the Corps of Engineers.
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4 Two Example Problems
Defined

In this chapter, hypothetical levee cross sections for two example problems
are defined. These are considered to represent two points along a broad range of
levee problems that may be encountered by an engineer in practice. In subse-
guent chapters, these two sections will be used to illustrate analyses for slope
stability, seepage, and erosion. The examples involve:

a. A sand levee with a thin topsoil facing on a thin uniform clay top
stratum.

b. A clay levee on a thick, nonuniform clay top stratum.

For each example section, the semipervious clay top stratum is assumed to be
underlain by a thick pervious lsstratum.

Problem 1: Sand Levee on Thin Uniform Clay Top
Stratum

Example problem 1 consists of a 2itth sand levee with 1V:2.5H side
slopes and a 20-ft-wide crown. It is founded on an 8-ft-thick clay top blanket
which is in turn underlain by an 80-ft-thick pervious sarfussatum. The crown
width of 10 ft is between the 8-ft and 12-ft values corresponding ®RReand
PNP templates. The 1V:2.5 slopes are steeper than recommended for either
template and represent a slope at the margin of maintainability. A levee section
for example problem 1 is shown in Figure 3.

Problem 2: Clay Levee on Thick NonUniform Clay
Top Stratum

Example problem 2 consists of a 2(itth clay levee with 1V:2H side slopes
and a 10-ft-wide crown. It is founded on a semipervious clay top blanket which

is 20 ft thick on the riverside of the levee. On the landside, the clay thickness
increases to 30 ft at the levee toe where a plugged chara#é|s the levee.
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Figure 3. Levee section for example problem 1

Landside of the levee toe, the ground elevation drops 5 ft in 40 ft and the clay
blanket thins to 15 ft, creating a location for a potential seepage concentration
80 ft landside of the levee center line. The top stratum is underlain by a pervious
sand substratum extending to elevaBd2.0. kgure 4 is a levee section for
example problem 2.
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Figure 4. Levee section for example problem 2

The crown width of 10 ft corresponds to the PNP tem§iRf® is 6 ft) and
the 1V:2H side slopes correspond to Bi& template and the ngar of
maintainability.
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5 Characterizing Uncertainty
In Geotechnical Parameters

Introduction

Thecapacity-demand modealescribed in Annex A and used herein to
calculate probabilities of failure, requires that the engineer assign values for the
probabilistic moments of the random variables considered in analysis. This
chapter reviews information regarding the observed variability of geotechnical
parameters and can be used as a guide wiaeaatbrilng random variables for
the analysis of levees.

Any parameter used in a geotechnical analysis can be modeled as a random
variable, and any variables that are expected to contribute uncertainty regarding
the expected performance of the structure or system should be so modeled.
Typically these include soil strength and soil permeability. In the Taylor's Series
first-order second moment (M) approach used hereinndom variables are
guantified by their expected values, standard deviations, and correlation
coefficients, commonly referred to as probabilistizments These moments are
defined in Annex A. Depending on the quantity and quality of available
information, values for probabilistic moments may be estimated in one of several
ways:

a. From statistical analysis of test data measuring the desirachpter.
b. From index test data which may be correlated to the desiragheter.

c. Simply based on judgment and experience where test data are not
available.

Each step from the top to the bottom in the above list implies increasing uncer-
tainty. When designing a new structure, the move from using test data to using
index data or from using index data to using experience only would likely be
accompanied by an increase in the factor of safety or an adjustment in the value
of a design arameter (e.g. reducing the design strength). The corresponding
action in reliability analysis would be to assume a larger coefficient of variation.
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Table 1 provides a summary of typical reported values for the coefficients of
variation of commonly encountered geotechniecaibmeters. More detailed com-
ment regarding the observed variability of relevaargmeters is provided in the
subsequent sections.

Table 1
Coefficients of Variation for Geotechnical Parameters

Coefficient of

Parameter Variation, percent  Reference
Unit weight 3 Hammitt (1966),
cited by Harr (1987)
4108 assumed by Shannon and Wilson, Inc., and
Wolff (1994)
Drained strength of sand ¢' 3.7t09.3 Direct shear tests, Mississippi River Lock

and Dam No. 2, Shannon and Wilson, Inc.,
and Wolff (1994)

12 Schultze (1972), cited by Harr (1987)
Drained strength of clay ¢' 7.5t010.1 S tests on compacted clay at Cannon Dam,
Wolff (1985)
Undrained strength of clay s 40 Fredlund and Dahlman (1972) cited by Harr
(1987)
30to 40 Assumed by Shannon and Wilson, Inc., and
Wolff (1994)
11to 45 Q tests on compacted clay at Cannon Dam,
Wolff (1985)
Strength-to-effective stress ratio | 31 Clay at Mississippi River Lock and Dam
Sy/ 0y No. 2, Shannon and Wilson, Inc., and Wolff
(1994)
Coefficient of permeability k 90 For saturated soils, Nielson, Biggar, and

Erh (1973) cited by Harr (1987)

Permeability of top blanket clay |20 to 30 Derived from assumed distribution,
Kp Shannon and Wilson, Inc., and Wolff (1994)
Permeability of foundation sands | 20 to 30 For average permeability over thickness of
ks aquifer, Shannon and Wilson, Inc., and
Wolff (1994)
Permeability ratio k¢ / ky, 40 Derived using 30% for k; and k,; see
Annex B
Permeability of embankment 30 Assumed by Shannon and Wilson, Inc., and
sand Wolff (1994)

Unit Weight of Soil Materials

The coefficient of variation of the unit weight of soil material is usually on the
order of 3 to 8 percent. In slope stability problems, uncertainty in unit weight
usually contributes little to the overall uncertainty, which is dominated by soil
strength. For stability problems, it can usually be taken as a deterministic variable
in order to reduce the number of random variables and simplify calculations. It
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may, however, require consideration for underseepage problems, where the
critical exit gradient is directly proportional to the unit weight.

Drained Strength of Sands

Reported coefficients of variation for the friction angj ¢f sands are in the
range of 3 to 12 percent. Lower values can be used where there is some
confidence that the materials considered are of consistent quality and relative
density, and the higher values should be used where there is considerable
uncertainty regarding material type or density. For the direct sissworesands
from Lock and Dam No. 2 cited in Table 1 (Shannon and Wilson, Inc., and Wolff
1994), the lower coefficients of variah correspond to higher confining stresses
and vice-versa.

Drained Strength of Clays

As the drained strengtipf) of clays is essentially a physical phenomenon
similar to the drained strength for sands, similar coefficients of variation (3 to
12 percent) would be expected. Evaluation of S test data on compacted clays at
Cannon Dam (WolffL985) showed coefficients of vaii@t in the range of 7.5 to
10 percent.

A common method in practice to estimate drained strength is by correlation to
the plasticity index. Correlations developed by the Corps of Engineers are shown
in the engineering manual on design and construction of levees (U.S. Army Corps
of Engineerdl978). Holtz and Kovacs1981) summarize correlahs developed
by Kenney (1959), Bjerrum and Simons (1960) and Ladd et al. (1977). Using
such correlations, the observed variation in plasticity index for a clay deposit can
be combined with the observed data scatter of the correlations in order to estimate
coefficients of variation for drained strengthrameters.

Undrained Strength of Clays
Estimation from test results

Where undrained tests are available @iissconsidered to be “representative”
of a considered project area, the expected value and standard deviation of the
undrained strengtls, or c, may be estimated directly from statistical analysis of
test data. An example is given in Table 2, which illustrates a statistical analysis of
unconfined compression test data furnished by the St. Louis District. The
resulting mean value and standard deviation of2Z84Land 798 Ib/ft ,
respectively, might be rounded to the following estimated moments:
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Expected value: E[c] = 1,200 Ib/ft
Standard deviation: o, = 800 Ib/fe
Coefficient of variation: V., = 66.7 percent

Note, however, that the calculated coefficient of variation is very large, even
larger than typical values cited in Table 1. In the case considered, samples were
taken from a range of depths from about 2 to 20 ft, and hence had been consoli-
dated under different effective overburden stresses. Where reasonable estimates
of consolidation stress can be made, the uncertainty can be reduced if the
undrained strength is normalized with respect to effective overburden stress as
described in the next section. However, for the St. Louis data, even a regression
analysis of strength versus sample depth did not reveal any trend. Thistsagge
“mixed population” of samples from different soil formations. Smaller
coefficients of variation might be obtained if the soil samples can lbeateg
into different strata based on visual examination, index propsisy, #nd an
understanding of the surficial geology.

Estimation from test results and consolidation stress

Ladd et al. (1977) and others have shown thatitideained strengt, (or c)
of clays with a given geologic origin can be “normalized” with respect to over-
burden stresss(,) and overconsolidation ratio (IR) and defined in terms of the
ratios/c’,. Analysis of test data on clay under the overflow dike for Mississippi
River Lock and Dam No. 2 (Shannon and Wilson, Inc., and V¥6B#) showed
that it was reasonable to characterize uncertainty in clay strength in terms of the
probabilistic moments of thg/o’, parameter. The ratio sf/c’, for 24 tested
samples was found to have a mean value of 0.35, a standard deviation of 0.11,
and a coefficient of variation of 31 percent.

Permeability for Seepage Analysis
Permeability of foundation sands

Permeability of sand samples can vary quite considerably; coefficients of
variation of more thah00 percent have been reported. These large values are
apparently the result of analyzing the variability of sand permeability from sample
to sample. However, in an underseepage analysis, the variable of interest is not
the permeability at the location of a specific sample, but the average permeability
over the vertical extent of an aquifer at a selected cross section. For levee
underseepage investigations, it is common to perform grain size analyses and
obtain values for thB,, sizes at a number of points in a single boring. If these
are used to estimate a set of permeability values using standard correlations (e.g.,
U.S. Army Corps of Engineefi®9©56), the expected value of the average perme-
ability over the depth of the aquifer at the boring site can be taken as the mean
value of the permeability estimates. The uncertainty in the average permeability
over the section is smaller than the uncertainty in the permeability at a random
point, and can be expressed as the standard error of the mean, which is the
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Table 2
Example Statistical Analysis of  Undrained T ests on Clay, Unconfined Compression
Tests On Undisturbed Samples
Borin g/Sample W st Wit - Wayg (Wiegt - Wyg ) c C-C par (cc ) ?
VPC2-01-91U T-1 24.8 2.07 4.277376 750 -484.0909 234,344
VPCS-01-91U T-6 23.3 0.57 0.322831 1,600 365.9091 133,889.5
VPCS-01-91U T-7B 25.5 2.77 7.662831 1,350 115.9091 13,434.92
VPCS-02-91U T-2 20.5 -2.23 4.981012 750 -484.0909 234,344
VPCS-02-91U T-3 21.2 -1.53 2.346467 1,800 565.9091 320,253.1
VPCS-02-91U T-4 20.5 -2.23 4.981012 650 -584.0909 341,162.2
VPCS-02-91U T-6 20.4 -2.33 5.437376 650 -584.0909 341,162.2
VPCS-03-91U T-3B 24.1 1.37 1.871921 2,500 1,265.909 | 1,602,526
VPCS-03-91U T-4B 20.5 -2.23 4.981012 2,250 1,015.909 | 1,032,071
VPCS-03-91U T-5 21.9 -0.83 0.691921 2,850 1,615.909 | 2,611,162
VPPS-02-91U T-1 19.7 -3.03 9.191921 2,750 1,515.909 | 2,297,980
VPPS-02-91U T3 18.5 -4.23 17.90829 800 -434.0909 188,434.9
VPGD-01-91U ST-2 195 -3.23 10.44465 1,350 115.9091 13,434.92
VPGD-05091U ST-1 23.9 1.17 1.364649 900 -334.0909 111,616.7
VPL-10-91U S-1 195 -3.23 10.44465 1,350 115.9091 13,434.92
VPL-19-91U ST-2 215 -1.23 1.517376 500 -734.0909 538,889.5
VPL-19-91U ST-3 23.3 0.57 0.322831 400 -834.0909 695,707.6
VPL-19-91U ST-5 311 8.37 70.02647 250 -984.0909 968,434.9
VPL-22-91U S-1 17.6 -5.13 26.33556 2,100 865.9091 749,798.6
VPL-22-91U S-3 23.8 1.07 1.141012 350 -884.0909 781,616.7
VPL-22-91U S-5 27.4 4.67 21.79192 450 -784.0909 614,798.6
VPL-22-91U S-7 316 8.87 78.64465 800 -434.0909 188,434.9
Sum = 500.1 286.6877 27,150 14,026,932
N = 22 22 22 22
W, = 22.73 Var = 13.03126 Cpar = 1,234.0 Var = 637587.8
Std. Dev. = 3.610 Std. Dev. = 798.491
N-1= 21 N-1= 21
Var = 13.6518 Var = 667949.1
Std. Dev. = 3.695 Std. Dev. = 817.282
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standard deviation of the sample values divided by the square root of the number
of samples:

3)

From detailed analysis of a number of borings near Lock and Dam No. 25 on the
Mississippi River, the author (Shannon and Wilson, Inc., and \W/@##)

measured coefficients of variation for the average sand permeability on the order
of 20 to 30 percent.

Permeability of top blanket clays

Although intact clays may have coefficients of permeability in the ran§e 10
to 10° cm/sec, values used to model the global permeability of a semipervious top
stratum k,) are typically much larger, commonly on the order of 10 cm/sec, to
reflect the effects of seepage througtfae cracks, animal holes, and other
defects. As the appropriate values have traditionally been estimated semi-
empirically, using numbers back-calculated from observations during floods,
typical values of the coefficient of variation are not accurately known. For studies
of dikes along the Mississippi River, a coefficient of variation of 20 percent was
assumed (Shannon and Wilson, Inc., and Wi&84), based ojudgmental
evaluation of the shape of trial probability distributions. For the underseepage
studies in Chapter 6, a coefficient of variation of 30 percent was assumed for the
top blanket.

Permeability ratio

The residual head landside of a levee and hence the potential for piping or
boiling is in fact related to the ratio of the permeability of the perviodbosteatum
to the permeability of the top blankkflk,, and not to the absolute value of either
permeability. If the expected values and standard deviations of the two
parameters are known, the expected value and permeability of the ratio can be
found as shown by example in Annex B.
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6 Underseepage Analysis

In this chapter, levee underseepage analyses are illustrated for the two
example problems defined in Chapter 4. The maximum exit gradient landside of
the levee is taken as the performance function, and the value of the critical
gradient, assumed to be 0.85, is taken as the limit state. As example problem 1
involves uniform foundation geometry, the classical methods of underseepage
analysis given in TM324 (U.S. Army Corps dEngineersl956a) are used to
calculate the exit gradient at the levee toe. For example problem 2, which has an
irregular foundation, the program LEVEEMSU (Wdlf89) is used to calculate
the maximum value of the exit gradient along a cross section perpendicular to the
levee. Piezometric head profiles from these analyses are in turn used in the slope
stability analyses of the next chapter.

Example Problem 1: Sand Levee on Thin Uniform
Clay Top Stratum

The levee cross section for example problem 1 was illustrated in Figure 3.
Four random variables are considered, the horizontal permeability of the pervious
substratunk;, the vertical permeability of the semi-pervious top blakkdhe
thickness of the top blanketand the thickness of the pervioudsiatumd. The
assigned probabilistic moments for these variables are given in Table 3.

Table 3
Random Variables for Example Problem 1

Coefficient of

Parameter

Expected Value

Standard Deviation

\

ariation, Percent

Substratum permeability, k, 1000 x 10* cm/sec | 300 x 10*cm/sec 30
Top blanket permeability, k, 1 x 10* cm/sec 0.3 x 10* cm /sec 30
Blanket thickness, z 8.0t 201t 25
Substratum thickness, d 80 ft 5 ft 6.25
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The coefficients of variation of the top blanket and foundation permeability
values (each 30 percent) were assigned based on the typical values summarized
in Chapter 5.

As borings are not available at every possible cross section, there is some
uncertainty regarding the thicknesses of the soil strata at the critical location.
Henced andz are modeled as random variables. Their deviations are set to
match engineering judgment regarding the probable range of actual values. For
the blanket thickness assigning the standard deviation at 2.0 ft models a high
probability that the actual blanket thickness will be between 4.0 and 12.@ft ( +
standard deviations) and a very high probability that the blanket thickness will be
between 2.0 and 14.0 ft (3+rstandard deviations). For the aquifer thickmkss
the two-standard-deviation range is 70 to 90 ft and the three-standard-deviation
range is 65 to 95 ft. For analysis of real levee systems, it is suggested that the
engineer review the geologic history and stratigraphy of the area and assign a
range of likely strata thicknesses that are considered the thickest and thinnest
probable values. These can then be taken to correspond to + 2.5 to 3.0 standard
deviations from the expected value.

As it is known that the exit gradient and stability against underseepage
problems are functions of the permeabitdgio k/k, and not the absolute
magnitude of the values, the number of calculations required for analyses can be
reduced by treating the permeability ratio as a single random variable. To do so,
it is necessary to determine the coefficient of variation of the permeability ratio
given the coefficient of variation of the two permeability values. In Annex B of
this report, example calculations are provided for three methods of calculating the
moments of functions of random variables: the Taylor's series method with both
exact and approximate derivatives, and the point estimate method. Based on
these three examples, it appears reasonable to take the expected value of the
permeability ratio as @00 and its coefficient of variah as 40 percent. This
corresponds to a standard deviatiod@® fork, /k,.

To facilitate calculations, a spreadsheet (shown in Figure 5) was developed
that accomplishes the following:

a. Solves for the exit gradient using the methods in T#23-(U.S. Army
Corps of Engineer$956a).

b. Repeats the solution for seven combinations of the irgraingeters
required in the Taylor's series method.

c. Determines the expected value and standard deviation of the exit gradient.

d. Calculates the expected value and standard deviation of the natural
logarithm of the exit gradient.

e. Calculates the probability that the exit gradient is above a critical value.
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Underseepage Analysis T. F. Wolff
Levee on Infinite length foundation September 1994
= 20
= 110
Variance % of
kf/kb z x3 s ho i component variance
mean 1000 8 80 800.00 910.00 9.357 1.170
600 8 80 619.68 729.68 9.185 1.148
1400 8 8o 946.57 1058.57 9.451 1.181} 0.000276532 0.30
1000 6 80 692.82 802.82 9.265 1.544
1000 10 80 89443 1004.43 9.421 0.942§ 0.080606378 99.69
1000 8 75 774.60 884.60 9.337 1.167
1000 8 85 82462 934.62 9.375 1.172| 5.55296E-06 0.01
Total 0.090888464 100.00
Efi] = 1170 Ellni]=  0.12449
Varii] = 0.090888
sigmafil= 0.301477 sigmaflnil= 0.253629
V@)= 25.78%
icrit= In(icrity=  -0.16252 [ Pr(f) = 0.871101

Figure 5. Spreadsheet for underseepage analysis of example problem 2
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Table 4
Problem 1, Under seepage Taylor's Series Analysis Water at
Elevation 420 (H = 20 ft)
Percent of
Run K/ky z d h, i Variance Total Variance
1 1,000 8.0 80.0 9.357 1.170
2 600 8.0 80.0 9.185 1.148
3 1,400 8.0 80.0  9.451 1.181 0.000276 0.30
1,000 6.0 80.0 9.265 1.544
5 1,000 10.0 80.0  9.421 0.942 0.090606 99.69
6 1,000 8.0 75.0 9.337 1.167
7 1,000 8.0 85.0 [l9.375 1.172 0.000006 0.01
Total | 0.090888 100.0

Results from the spreadsheet for a 20-ft total head on the levee are summarized in
Table 4. The details of the calculations follow.

For the first analysis (Run 1), the three random variables are all taken at their

expected values. From TM3-424, first the effective exit distanisecalculated
as:

-z~d = ,/10008-80 = 800 ft (4)

&
@‘IK‘

As the problem is symmetrical, the distance from the riverside toes to the effec-
tive source of seepage entramrces also 800 ft.

From the geometry of the given problem, the base width of thexgvee
is 110 ft.

The distance from the landside toe to the effective source of seepage entrance
is:

S =X, +X, - 800+110 - 910 ft (5)

The net residual head at the levee toe is:

Hx 20-800
h, - - - 9.3571t
0 " sx,  910+800 ©)

And the landside toe exit gradient is:



ETL 1110-2-556
28 May 99

h
i -2 - 9374470 )
z 8.0

For the second and third analyses, the permeability ratio is adjusted to the
expected value plus and minus one standard deviation while the other two vari-
ables are held at their expected values. These are used to determine the compo-
nent of the total variance related to the permeability ratio:

i, - 2
L o =

ki,
20kf,kb]

i+-i-)2 :(1.181-1.1432 - 0.000277
2 2 '

ai o2
a(k k)|
(8)

A similar calculation is performed to determine the variance components
contributed by the other random variables.

When the variance components are summed, the total variance of the exit
gradient is obtained as 0.090888.kifg the square root of the variance gives the
standard deviation of 801.

The exit gradient is assumed to be a lognormally distributed random variable
with probabilistic momentE[i] = 1.170 andy, = 0.301. Umg the properties of
the lognormal distribution described in Annex A, the equivalent normally
distributed random variable has mometftis i] = 0.124 and,,; = 0.254.

The critical exit gradient is assumed to be 0.85. The probability of failure is
then:

Pr,=Pr (Ini>In0.85) 9

This probability was evaluated using a normal distribution function built into
the spreadsheet. It can be solved using standard tables by first calculating the
standard normalized variate

Ini, -E[lni - -
, o iy “EIn ] -0.16252-0.12449 _ o, (10)
O 0.253629

For this value, the cumulative distribution functke(z) is 0.129, and
represents the probability that the gradient is below critical. The probability that
the gradient is above critical is
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Pr=1-F@z) = 1-0.129=0.871 (11)

Note that the value is analogous to the reliability indéxand it could be stated
thatf=-1.13.

The probability calculation is illustrated in Figure 6. The exit gradient is
taken to be lognormally distributed, making the natural log of the exit gradient
normally distributed. The expected valudrof (0.124) exeeds the limit state
value (ni =-0.163) by 0.287, or 1.132 standard dewrad. The probability of
having an exit gradient above critical is the area shaded. For a normal distribu-
tion, the probability of a value less than32 standard deviains below the
expected value or mean is 0.129; hence the piityas being above this point
is 0.871.

Once the spreadsheet was complete, the analysis could be readily repeated for
a range of heads on the levee from 0 to 20 ft. This was accomplished and the
resulting conditional probability of failure function was plotted as shown in
Figure 7. The shape of the function is similar to that suggested in Chapter 1. The
probability of failure is very low until the head on the leveeeexls about 8 ft,
after which it curves up sharply. It reverses curvature when heads are in the
range 14 to 16 ft and the probability of failure is near 50 percent. When the
floodwater elevation is near the top of the levee, the conditional probability of
failure approaches 87 percent.

E[In i] = 0.124

Inicrit=-0.163

7

e? Ini

-1.132 sigmalni

Figure 6. Calculation of probability of failure for underseepage

The results of one intermediate calculation in the analysis are worthy of note.
As indicated by the relative size of the variance components shown in Table 4,
virtually all of the uncertainty is in the top blanket thickness. A similar effect was
found in other underseepage analyses by the writer reported in the Upper
Mississippi River report (Shannon and Wilson, Inc., and W& f4); where the
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Example Problem 1

Conditional Probability of Underseepage Failure as a ftinction of flood water height H

H Pr(f)
0 0
2 9.99E-16
4 9.26E-08
6 1.50E-04
8 6.55E-03
10 547E-02
12 1.89E-01
14 3.92E-01
16 5.99E-01
18  7.63E-01
20 8.71E-01

Pr(failure)

0.9

0.8

0.7

06

05

04

0.3

0.2

—

N

b

» L)

o L}—

8 10
H, ft

12

14

16

18

Figure 7. Conditional probability of failure function: Underseepage for example problem 1
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top blanket thickness was treated as a random variable, its uncertainty dominated
the problem. This has two implications:

a. Probability of failure functions for preliminary economic analysis might be
developed using a single random variable, the top blanket thickness

b. In expending resources to design levees against underseepage failure,
adding more data to the blanket thickness profile may be more justified
than obtaining more data on material properties.

Example Problem 2: Clay Levee on Thick Non-
Uniform Clay Top Stratum

Underseepage for example problem 2 was analyzed using the computer
program LEVEEMSU (WolIffL989), which is capable of anailyg irregular
foundation geometry. Random variables were assigned the probabilistic
moments shown in Table 5.

The permeability ratié /k, was modeled in LEVEEMSU by setting the top
stratum permeability to 1 x ¥0 cm/sec and analyzing the foundation permeability
at values of 1,000 x 10 , 600 x40 , and 1400 X 10 cm/sec for the expected

value, plus one standard deviation, and minus one standard deviation analyses,
respectively.

Table 5
Random Variables for Example Problem 2

Expected Standard Coefficient of
Parameter Value Deviation ariation
Permeability ratio, k kb 1,000 40 40%
Blanket thickness, z As shown in 2.0ft NA

Figure 6
Base of substratum elevation 312.0 5 ft NA

Uncertainty in the blanket thickness was modeled by specifying the base of
the blanket profile as shown in Figure 4 for the expected value and then moving it
up and down 2 ft. This implies that the top blanket is assumed to be of the
general shape shown and that there is a high probability that the blanket thickness
is within +4 ft of the thickness shown and a very high probability that it is within
+ 6 ft of the thickness shown.
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Uncertainty in the base of the pervioubstatum was likewise modeled by
specifying it as shown and then moving it up and down 5 ft. This implies that
there is a high probability that the base of tHessatum is between elevation
302 and 322 (two standard deigais), and a very high probability that it is
between elevatior397 and 327 (three standard deicias).

Results of the analyses for the maximum 20-ft head on the levee are as shown
in Table 6.

A spreadsheet similar to that for problem 1 was developed to perform
probability of failure calculations (Figure 8). For the maximum head of 20 ft on
the levee, the expected value of the maximum exit gradient is 0.718 and its
standard deviation is@98. This corregmds to a probability of failure of
0.078, or almost 8 percent.

For lesser heads on the levee, it was assumed that the exit gradient is linear
with respect to levee head, and the same spreadsheet was used with scaled exit
gradient values (Figures 9 through 11) to calculate the probability of failure for
lesser heads. At a 17.5-ft head, the probability of failure drop®®® 0and at a
15-ft head, to 0.000097.

Table 6

Problem 2, Underseepage Taylor's Series Analysis Water at
Elevation 420 (H = 20 ft)

Base of h, Percent of
Run  k/k, z Substratum attoe Imax  Variance Total Variance
1 1000 E[z] 312.0 .718
2 600 E[z] 312.0 729
3 1400 Elz] 312.0 699  [-000225 28
1000 +2.0 3120 .640
5 1000 -2.0 312.0 817 |007832 [ 97.1

6 1000 ElZ] 317.0 715
7 1000 ElZ] 307.0 721 |.000009 0.1

.008066 |100.0

Total

The conditional probability of failure versus floodwater elevation is shown in
Figure 12.

As was previously observed for example problem 1, examination of the vari-
ance terms indicates that virtually all of the uncertainty in the levee performance
with respect to underseepage traces to uncertainty in the thickness of the top
blanket: the thicker the top blanket or the more certain one is regarding the
thickness of the blanket, the more reliable the levee can be considered.
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Underseepage Analysis T. F. Wolff
Levee on Infinite length foundation September 1994
H= 20
i for Variance % of
kf/kb z rock H=20 i component variance
mean 1000 E[z] 312 0.718 0.718
1400 E[z] 312 0.729 0.729
600| E[2] 312 0.699 0.699 0.000225 2.79
1000 +2.0 312 0.640 0.640
1000 -2.0 312 0.817 0.817 0.00783225 97.10
1000 E[Z] 317 0.715 0.715
1000 E[z] 307 0.721 0.721 9E-06 0.11
Total 0.00806625 100.00
E[il = 0.718 E[lni]= -0.33905
Varfi]= 0.008066
sigma[i] = 0.089812 sigmallni]l= 0.124602
Vi)= 1251%
i crit = In(icrity =  -0.16252 | Prif)=__ 0.078278]

Figure 8. Spreadsheet for underseepage analysis of example problem 2 (H = 20 ft)

66 Ae|N 8¢
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Underseepage Analysis T. F. Wolff
Levee on Infinite length foundation September 1994
H= 17.5'
|
ifor Variance % of
kf/kb z rock H=20 i component variance
mean 1000 E[z] 312 0.718 0.628
1400 E[z] 312 0.729 0.638
600 EIz] 312 0.699 0.612 0.000172266 2.79
1000 +2.0 312 0.640 0.560
1000 -2.0 312 0.817 0.715 0.005996566 97.10
1000 E[z] 317 0.715 0.626
1000 Ej[z] 307 0.721 0.631 6.89062E-06 0.11
Total 0.006175723 100.00
E[i] = 0.628 Eflni]= -0.47258
Varfi}= 0.006176
sigma[i] = 0.078586 sigmallni}j= 0.124602
V= 1251%
icrit= Inficrif)= -0.16252 | Pr(f) = 0.006416]

Figure 9. Spreadsheet for underseepage analysis of example problem 2 (H= 17.5 ft)
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Underseepage Analysis T. F. Wolff
Levee on Infinite length foundation September 1994
H= 15
i for Variance % of
kf/kb z rock H=20 i component variance
mean 1000 E[z] 312 0.718 0.539
1400 E[z] 312 0.729 0.547
600 E[z] 312 0.699 0.524 | 0.000126563 2.79
1000] +2.0 312 0.640 0.480
1000 -2.0 312 0.817 0.613 0.004405641 97.10
1000  Efz] 317 0.715 0.536
1000 E[z] 307 0.721 0.541 5.0625E-08 0.11
Total 0.004537266 100.00
Efi] = 0.539 Eflnil= -0.62673
Varli] = 0.004537
sigmali]= 0.067359 sigmallni] = 0.124602
V= 12.51%
icrit= InGicri) = -0.16252 | Pr(f) = 0.000097]

Figure 10. Spreadsheet for underseepage analysis of example problem 2 (H = 15 ft)

66 Ae|N 8¢
9G5-2-0TTT 113



Lv-d

Underseepage Analysis T. F. Wolff
Levee on Infinite length foundation September 1994
H= 12.5
i for Variance % of
kf/kb z rock H=20 i component variance
mean 1000 E[z] 312 0.718 0.449
1400 E[z] 312 0.729 0.456
600 Efz] 312 0.699 0.437 8.78908E-05 2.79
1000 +2.0 312 0.640 0.400
1000 -2.0 312 0.817 0.511 0.003059473 97.10
{1000 E[z] 317 0.715 0.447
1000 E[z] 307/ 0.721 0.451 3.51563E-068 0.11
Total 0.003150879 100.00
Elil] = 0.449 Eflnil= -0.80905
Varfij= 0.003151
sigmali] = 0.056133 sigmaflnil= 0.124602
Vi)= 12.51%
i crit = InGicrity = -0.16252 Pr(f) = 0.000000

Figure 11. Spreadsheet for underseepage analysis of example problem 2 (H = 12.5 ft)
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Example Problem 2
Conditional Probability of Underseepage Failure as a function of flood water height H

Pr(f)

0.0
2.5
5.0
7.5
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Figure 12. Conditional probability of failure function: Underseepage for example problem 2
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7 Slope Stability Analysis for
Short-Term Conditions

In this chapter, slope stability analyses are illustrated for the two example
problems defined in Chapter 4 assuming undrained conditions prevail in the clay
soils present in the profiles. This in turn implies that pore pressure conditions in
the clay are dependent only on initial conditions prior to a flood and pore pressure
changes due to shear, and that pore pressures have not equilibrated with flood
water to develop steady-state seepage conditions in clay soils. These assumptions
are consistent with short-term flood loadings. Slope stability analyses were
performed using the computer program UTEXAS2 (Edris and W1ig87). For
the cases analyzed, similar results would be expected with theenent r
program UTEXAS3.

Example Problem 1: Sand Levee on Thin Uniform
Clay Top Stratum

Problem modeling

The levee cross section for example problem 1 was illustrated in Figure 3.
For slope stability analysis, three random variables were defined; these variables,
along with their assigned probabilistic moments, are summarized in Table 7.

Table 7
Random Variables for Example Problem 1
Expected Standard Coefficient
Parameter \Value Deviation f Variation
"Friction angle of sand levee embankment, ¢, |30 deg 2 deg 6.7%
"Undrained strength of clay foundation, c or s,  |800 Ib/ft? 320 Ibfit? 40%
"Friction angle of sand foundation, g 34 deg 2 deg 5.9%
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For slope stability analysis, the piezometridace in the embankment sand was
approximated as a straight line from the point where the floodwater intersects the
riverside slope to the landside levee toe. For the internal erosion and through-
seepage analyses in Chapter 9, this assumption is refined using Casagrande
basic parabolagdution. The piezometric siace in the foundation sands was

taken as that obtained for the expected value condition in the underseepage
analysis reported in Chapter 6. If desired, the piezometric surface could be
modeled as an additional random variable using the probabilistic moments of the
residual head developed from the underseepage analysis.

Results

Using the Taylois Series - Finite Difference method described in Annexes A
and B, seven runs of the slope stability program are required for each floodwater
level considered; one for the expected value case, and two runs to determine the
variance component of each random variable. For the first water elevation
considered (el. 400, or water at the naturaligd suface), eleven runs were in
fact made as several starting centers for the circular search option were checked
to ensure that the critical failurerface was found. The results of the required
seven runs are summarized in Table 8.

Table 8
Problem 1, Undrained Slope Stability, Taylor's Series
Analysis Water at Elevation 400 (H = O ft)
() c [0) Percent of
Run levee clay found FS Variance Total Variance
1-2 32 800 34 1.568
4 30 800 34 1.448
5 34 800 34 1.693 0.015 006 59.29
6 32 480 34 1.365
7 32 1120 34 1.568 0.010 302 40.71
8 32 800 32 1.568
9 32 800 36 1.567 2.5x107 0.00
Total 0.025 309 100.0

The results for all runs for all water elevations are summarized in Table 9.
Critical failure sufaces for the cases of floodwater at elevatiof, 410, and 420
are illustrated in Figures 13 through 15. The reliability index and probability of
failure for each water elevation were calculated using the spreadsheet templates
illustrated in Figures 16 through 21. The resulting conditional probability of
failure function is illustrated in Figure 22 and enlarged in Figure 23.
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Table 9
Problem 1, Undrained Slope Stability, Results for All Runs

Material Properties Initial Values Final Critical Surface Initial Values Final Critical Surface
Run# | (Emb) |c (clay) |$(Fnd) \é\{:\tler X Y Tang |FS X Y Tang X Y Tang = X Y Tang
1A 32 800 34 400 50 450 400 1.568 |63 444 400 50 450 390 2.009 31.6 432.6 392
4A 30 800 34 400 50 450 400 1449 63 444 400 50 450 390 1.448 41.6 461.4 409.2
5A 34 800 34 400 50 450 400 1.693 |63 444 400 50 450 390 2.042 31.6 432.4 392
6A 34 480 34 400 50 450 400 1568 63 444 400 50 450 390 1.365 314 4314 392
7A 32 1120 34 400 50 450 400 1568 |63 444 400 50 450 390 2.548 41.2 439.6 388
8A 32 800 32 400 50 450 400 1568 |63 444 400 50 450 390 2.150 41.2 441 389.6
11A 32 800 36 400 50 450 400 1568 63 444 400 50 450 390 1.567 41.6 461.4 409.2
12A 32 800 34 410 50 450 400 1568 |63 444 400 50 450 390 1.961 434 442.2 388.4
13A 30 800 34 410 50 450 400 1.449 |63 444 400 50 450 390 1.936 43.6 443 388.6
14A 34 800 34 410 50 450 400 1.449 |63 444 400 50 450 390 1.987 43.2 441.8 388.4
15A 32 480 34 410 50 450 400 1.693 63 444 400 50 450 390 1.332 31.2 431.6 392
16A 32 1120 34 410 50 450 400 1.568 |63 444 400 50 450 390 2.248 43 440.2 386.4
17A 32 800 32 410 50 450 400 1568 |63 444 400 50 450 390 1.897 43.2 441.4 388
18A 32 800 36 410 50 450 400 1568 |63 444 400 50 450 390 2.023 43.6 443.4 389
19A 32 800 34 405 50 450 400 1568 |63 444 400 50 450 390 2.105 424 442 389.2
20A 30 800 34 405 50 450 400 1.449 |63 444 400 50 450 390 2.077 424 442.4 389.4
21A 34 800 34 405 50 450 400 1.693 |63 444 400 50 450 390 2.134 42.2 441.4 389.2
22A 32 480 34 405 50 450 400 1568 63 444 400 50 450 390 1.359 314 4314 392
23A 32 1120 34 405 50 450 400 1.568 |63 444 400 50 450 390 2.410 42 439.8 387.2
24A 32 800 32 405 50 450 400 1568 |63 444 400 50 450 390 2.038 42.2 440.8 388.6
25A 32 800 36 405 50 450 400 1.568 |63 432.6 400 50 450 390 2.169 42.4 442.6 389.8
(Continued)
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Table 9 (Concluded)

Material Properties Initial Values Final Critical Surface Initial Values Final Critical Surface

Run# | ¢ (Emb) |c (clay) |$(Fnd) \é\{:\tler X Y Tang |FS X Y Tang X Y [Tang = X Y Tang

26A 32 800 34 415 50 450 400 1502 |50 452 400 50 450 390 1.774 44.6 443.6 387.8
27A 30 800 34 415 50 450 400 1.387 |50 452.8 400 50 450 390 1.753 44.6 4444 388

28A 34 800 34 415 50 450 400 1.584 |48.6 454 400 50 450 390 1.794 44.6 443.2 387.6
29A 32 480 34 415 50 450 400 1502 50 452.8 400 50 450 390 1.420 45.8 445.8 390

30A 32 1120 |34 415 50 450 400 1502 |50 452.8 400 50 450 390 2.049 44 441.6 386

31A 32 800 32 415 50 450 400 1.502 |50 452.8 400 50 450 390 1.717 44.4 442.4 387.2
32A 32 800 36 415 50 450 400 1502 |50 452.8 400 50 450 390 1.829 45 444.8 388.2
33A 32 800 34 420 50 450 400 1.044 |50 454 400 50 450 390 1.504 46.8 449.2 387.4
34A 30 800 34 420 50 450 400 0.995 |50.8 452.8 400 50 450 390 1.490 47.0 449.4 3874
35A 34 800 34 420 50 450 400 1.162 |50.8 452.8 400 50 450 390 1.515 46.4 448.6 3874
36A 32 480 34 420 50 450 400 1.044 |50 454 400 50 450 390 1.158 48.8 454.8 389.4
37A 32 1120 34 420 50 450 400 1.044 |50 454 400 50 450 390 1.775 454 445.6 385.8
38A 32 800 32 420 50 450 400 1.044 |50 454 400 50 450 390 1.457 46.2 448 387

39A 32 800 36 420 50 450 400 1.044 |50 454 400 50 450 390 1.546 47.2 450.4 387.8
50A 32 800 34 4175 50 450 400 1.339 |50.0 444.4 400.0 50 450 390 1.601 45.0 444.4 387.0
51A 30 800 34 4175 50 450 400 1.237 |50.0 4444 400.0 50 450 390 1.636 45.6 445.8 387.6
52A 34 800 34 4175 50 450 400 1.446 |50.0 444.8 400.0 50 450 390 1.670 45.2 444.8 387.4
53A 32 480 34 4175 50 450 400 1.339 50.0 4444 400.0 50 450 390 1.307 47.0 4494 389.6
54A 32 1120 34 4175 50 450 400 1.339 |50.0 444.4 400.0 50 450 390 1.926 44.6 442.8 385.8
55A 32 800 32 4175 50 450 400 1.339 |50.0 4444 400.0 50 450 390 1.601 45.0 444.4 387.0
56A 32 800 36 417.5 50 450 400 1.339 |50.0 444.4 400.0 50 450 390 1.703 45.8 446.6 388.0
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Failure Surfaces of Problem 1
Water Elevation = 400
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Figure 13. Failure surfaces for example problem 1, water elevation = 400
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Failure Surfaces of Problem 1

Horizontat Distance, (feet)

Water Elevation = 410
425 +
— slope geometry

40 + — = = river
sus. L m N pizometric surface in foundation
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Figure 14. Failure surfaces for example problem 1, water elevation = 410
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Failure Surfaces of Problem 1
Water Elevation = 420
425 s slope geometry
420 o o == e . .
------ pizometric surface in foundation
%‘41 5 —2—Runs 33A, 36A-39A
g410 ---------------------------------------------------------------------------------
Rk
.ﬁ
> 400
2
L 39 +
390 :
385 } } ! i } f i
60 -40 -2 0 20 40 60 80
Horizontal Distance, {feet)
Figure 15. Failure surfaces for example problem 1, water elevation = 420
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Beta = 4.394115591

Slope Stability Analysis Wolff / Ramon / Rahat
Problem 1 June 1985
Water Ht = 0
Water El = 400
Variance % of
d(emb) c(ciay)  ¢(sub) FS component variance
mean 32 800 34 1.568
30 800 34 1.448
34 800 34 1.693] 0.0150063 59.29
32 480 34 1.365
32 1120 34 1.568{ 0.0103023 40.71
32 800 32 1.568
3z 800 36 1.567 2.5E-07 0.00
Total 0.0253088 100.00
E[FS] = 1.568 E[ln FS] = 0.4446803
Var[FS] = 0.025308
sigma[FS] = 0.159087 sigma[in FS]=  0.1011989
V(FS)=  10.15%
FS crit = In(FS crit) 0 |

Pr(f) =

0.000006]

Figure 16. Reliability calculations for undrained slope stability, example problem 1, water height = 0, water elevation = 400
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Beta = 4.35096396

Slope Stability Analysis Wolff / Ramon / Rahat
Problem 1 June 1995
Water Ht = 5
Water El = 405
Variance % of
¢(emb) c(clay)  ¢(sub) FS component variance
mean 32 800 34 1.568
30 800 34 1.449
34 800 34 1.693| 0.014884 57.68
32 480 34 1.359
32 1120 34 1.568] 0.0109203 42.32
32 800 32 1.568
32 800 36 1.568 0 0.00
Total 0.02538043 100.00
E[FS] = 1.568 E[in FS]= 0.4445806
Var[FS] = 0.025804
sigma[FS] = 0.160637 sigmafin FS] = 0.1021798
V(FS)=  10.24%
FS crit = In(FS crit) 0 |

Pr{f) =

0.000007]

Figure 17. Reliability calculations for undrained slope stability, example problem 1, water height = 5, water elevation = 405
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Slope Stability Analysis Wolff / Ramon / Rahat
Problem 1 June 1995
Water Ht = 10
Water El = 410
Variance % of
d(emb) c(clay) ¢(sub) FS component variance
mean 32 800 34 1.568
30 800 34 1.449
34 800 34 1.693| 0.014884 51.67
32 480 34 1.332
32 1120 34 1.568] 0.013924 48.33
32 800 32 1.568
32 800 36 1.568 0 0.00
Total 0.028808 100.00
E[FS] = 1.568 Efin FS] = 0.4439764
Var[FS] = 0.028808
sigma[FS] = 0.169729 sigmafln FS] = 0.1079306
V(FS) = 10.82% Beta= 4.11353701
Fscit=] 1] In(FS crit) 0 | Prif)=  0.000019]

Figure 18. Reliability calculations for undrained slope stability, example problem 1, water height = 10, water elevation = 410
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Slope Stability Analysis Wolff / Ramon / Rahat
Problem 1 June 1995
Water Ht = 15
Water El = 415
Variance % of
¢(emb) c(clay) ¢(sub) FS component variance
mean 32 800 34 1.502
30 800 34 1.387
34 800 34 1.584§ 0.0097023 85.23
32 480 34 1.420
32 1120 34 1.502] 0.001681 14.77
32 800 32 1.502
32 800 36|, 1.502 0 0.00
Total 0.0113833 100.00
E[FS] = 1.502 E[ln FS]=  0.404281
var[FS] = 0.011383
sigma[FS] = 0.106692 sigmafln FS] = 0.0709441
V(FS) = 7.10% Beta= 5.6985824
FS crit = In(FS crit) 0 | Pr(f)=__0.000000]

Figure 19. Reliability calculations for undrained slope stability, example problem 1, water height = 15, water elevation = 415
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Slope Stability Analysis

Wolff / Ramon / Rahat

Problem 1 June 1995
Water Ht = 17.5
Water El = 417.5
Variance % of
d(emb) c(clay)  ¢(sub) FS component variance
mean 32 800 34 1.339
30 800 34 1.237
34 800 34 1.446{ 0.0109203 97.71
32 480 34 1.307
32 1120 34 1.338} 0.000256 2.29
32 800 32 1.339
32 800 36 1.339 0 0.00
Total 0.0111763 100.00
E[FS] = 1.339 Efln FS]= 0.288816
VarfFS]= 0.011176
sigma[FS] = 0.105718 sigmafin FS] = 0.0788302
V(FS) = 7.90%
FScit=[_____ 1] In(FS crit) 0

3.66377481

0.000124]

Figure 20. Reliability calculations for undrained slope stability, example problem 1, water height = 17.5, water elevation =417.5
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Slope Stability Analysis Wolff / Ramon / Rahat
Problem 1 June 1995
Water Ht = 20
Water El = 420
Variance % of
¢(emb) c (clay) ¢(sub) FS component variance
mean 32 800 34 1.044
30 800 34 0.895
34 800 34 1.162| 0.0069722 100.00
32 480 34 1.044
32 1120 34 1.044 0 0.00
32 800 32 1.044
32 800 36 1.044 0 0.00
Total 0.0069722 100.00
E[FS] = 1.044 E[in FS] = 0.0398712
Var[FS] = 0.006972
sigma[FS] = 0.0835 sigmalin FS] = 0.0798534
V(FS) = 8.00% Beta= 0.49930523
FScit=[ 1] In(FS crit) 0 | Pr(f) = 0.308782]

Figure 21. Reliability calculations for undrained slope stability, example problem 1, water height = 20, water elevation = 420
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Example Problem 1
Conditional probability of slope failure as a function of flood water height H

H Pr(f)
0 0.000006 1
5  7.00E-06 09
10  1.90E-05
15  6.06E-09 08
17.5 0.000124 0.7
20 3.09E-01 5 08
2 o5
& 04
0.3 o]
0.2
0.1 //
oD 3 :'_L, = -_:_/
0 2 4 6 8 10 12 14 16 18 20
H, ft

Figure 22. Conditional probability function for undrained slope failure, example problem 1
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Conditional Probability of Slope Stability as a function of flood water height H

H, ft

(8] 2 4 6 8 10 12 14
1

16

18

0.1

0.01

\\n—- 3

0.001

0.0001

Pr{failure)

0.00001 1— — ‘%’"‘

0.000001

0.0000001

0.00000001 /

0.000000001

Figure 23. Conditional probability function for undrained slope failure, example problem 1, enlarged view
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A discontinuity inPr; is observed as the flood height is increased from 10 ft to

15 ft; Pr, abruptly decreases, then begins to rise again. This illustrates an
interesting facet of probability analyskr; is a function not only of the expected
values of the factor of safety and the underlyiagameters, but also of their
coefficients of variation. In the present case, at a flood height between 10 ft and
15 ft, some of the critical surfaces move from the foundation clay, with a high
coefficient of variation for its strength, to the embankment sands, for which the
coefficient of variation is smaller. This decreagesdPr;. Even though the

safety factor may decrease as the flood height increases, if the value of the smaller
safety factor is more certain, due to the lesser strength uncerijntyay

decrease.

Example calculation of probability values

The calculation of the probability values for the case of water at elevation 400
is summarized as follows.

The expected value of the factor of safety is the factor of safety calculated using
the expected values of all variables:

E[FS] = 1.568 (12)

The variance of the factor of safety, calculated in the same manner as previously
illustrated for the exit gradient in underseepage in the previous chapter, is:

Var[FS] = 0.025309 (13)
and the standard deviation of the factor of safety is:
05 = 0.159 (14)

While the factor of safety is expected to be adequab€8). its exact value is
uncertain. The factor of safety is assumed to be a lognormally distributed random
variable withE[FS] = 1.568 andu- = 0.159. From the properties of the

lognormal distribution given in Annex A,

_ Ors  0.159

V, - - 0.1015 15
S E[F§ 21.568 (15)

Oprs = Y1IN(L+VE) = {/In(1+0.101%) = 0.1012 (16)
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o) 0.0102
E[InFY - 1InE[FY - 1£F5 - 1n1568 - — - 0.4447 (17)
The reliability index is then:
E[1nF 0.447
p = [InFS _ = 4.394 (18)

0prs 01012

From the cumulative distribution function of the standard normal distribution
evaluated atg, the conditional probability of failure for water at elevad@® is:
Pr, = 6x10° (29)

The calculation of the reliability index is illustrated in Figure 24.

E[In FS] = 0.445

limit state
In1=0.0

Pr(f) = 0.000006

+e InFS

In FS

Figure 24. Calculation of probability of failure for slope stability

Interpretation

Note that the calculated probability of failure infers that the existing levee is
taken to have approximately a six in one million probability of not being stable
under the condition of floodwater to its base elevatiofO8f, eventiough it may
in fact be existing and observed stable under such conditions. The capacity-
demand / reliability index model was developed for the analysis of yet-
unconstructed structures. When applied to existing structures, it will provide
probabilities of failure greater than zero. This can be interpreted as follows:
given a large number of different levees, each with the same geometry and with
the variability in the strength of their soils distributed according to the same
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density functions as those assigned by the engineeataatarize uncertainty in

the soil strength, about six in one million of those levees might be expected to
have slope stability problems. The expression of reliability of existing structures
in this manner provides a consistent probabilissimework for use in economic
evaluation of improgments to those structures.

Discussion

The results of the probabilistic analyses are summarized in Table 10.

Table 10
Problem 1, Slope Stability for Short-Term Conditions, Summary of
Probabilistic Analyses

Water Elevation E[FS] Ors B Pr,
400.0 1.568 0.159 4.394 6x10°
405.0 1.568 0.161 4.351 7x10°
410.0 1.568 0.170 4.114 1.9x10°
415.0 1.502 0.107 5.699 6 x 10°
420.0 1.044 0.084 0.499 0.3087

As would be expected, the anticipated value of the factor of safety decreases
with increasing floodwater elevation. Crarty to what night be expected, the
reliability index increases and the probability of failure decreases with increasing
floodwater elevation until the floodwatera®eds elevain 415.0, or three
guarters the levee height. This occurs because the uncertainty in the factor of
safety decreases along with the expected value, and the probability of failure
reflects both measures. Although the factor of safety becomes smaller as the
floodwater rises, its value becomes more dependent on the shear strength of the
embankment sands and less dependent on the shear strength of the foundation
clays. This is evident in Figure 14 where the failuréese moves down into the
foundation clay for the case of weak clay, and in Figure 15 where the failure
surfaces move up into the embankment sand for all cases. As there is more
certainty regarding the strength of the sand (the coefficient of variations are about
6 percent versus 40 percent for the clay), this amounts to saying that a sand
embankment with a low factor of safety can be more reliable than a clay
embankment with a higher factor of safety. Similar findings were observed by
Wolff (1985) and others.

Review of the relative magnitudes of the variance components indicates that
40 to 48 percent of the problem uncertainty is related to the shear strength of the
foundation clay, until the floodwater elevatiorcegds415, at which the con-
tribution of the foundation clay abruptly drops to about 15 percent and then con-
tinues to drop as the embankment sand becomes the dominant random variable.
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Example Problem 2: Clay Levee on Thick Irregular
Clay Top Stratum

Problem modeling
The levee cross section for example problem 2 was illustrated in Figure 4.

For slope stability analysis, four random variables were defined; these variables
along with their assigned probabilistic moments are shown in Table 11.

Table 11
Random Variables for Example Problem 2

Expected Standard Coefficient
Parameter Value Deviation bf Variation
Undrained strength of clay levee, c or s, 800 Ibfit? 240 Ibfft? 30%
Undrained strength at top of clay foundation, ¢ or | 500 Ib/ft? 50 Ibfft? 10%
s, (CPROFL)
Rate of increase of undrained strength of clay 18 Ib/ft/it 2 Ib/fté/it 11%
foundation, (RATEIN)
Friction angle of sand foundation, ¢4 34 deg 2 deg 5.9%

The linearly varying strength option of UTEXAS2 was used to model strength
of the clay foundation. The variadB#ROFL models thendrained strength at
the top of the clay foundation and the variable RATEIN models the rate of
increase of the undrained strength with respect to depth. Combination of these
two parameters permits the uncertainty in strength to increase with depth.
Coefficients of variation were chosen to give a reasonable value for the total
uncertainty. Water-filled cracks were specified to a deptlt/of, 2vhere the
value ofc was run-specific.

The piezometric surface in the foundation sands was taken as that obtained
for the expected value condition in the underseepage analysis reported in
Chapter 6.

Results

The results for all runs for all water elevations are summarized in Table 12.
Critical failure sufaces for the cases of floodwater at elevaté&d® and 420 are
illustrated in Figures 25 and 26. Calculation of the reliability index and
probability of failure for each water elevation were accomplished using the
spreadsheet templates illustrated in Figures 27 and 28. The resulting conditional
probability of failure function is illustrated in Figure 29 and enlarged in
Figure 30.
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Table 12
Problem 2, Undrained Slope Stability, Results for All Runs

Material Properties Water Run-Time Seed Values Final Critical Surface

Run# c(levee) c(profl) rate of ¢ $(Found) Elevation Xstart Ystart Ytanin Ylimit FS XCenter Ycenter Radius
101 800 500 18 34 400 30 430 392 300 1.525 31.0 430.8 43.6
102 560 500 18 34 400 30 430 380 300 1.405 28.6 432.6 40.6
103 1040 500 18 34 400 30 430 360 300 1.615 334 430.4 47.2
104 800 450 18 34 400 30 430 392 300 1.425 30.8 430.6 43.6
105 800 550 18 34 400 30 430 392 300 1.625 31.2 430.8 43.8
106 800 500 16 34 400 30 430 392 300 1.490 32.0 430.6 45.0
107 800 500 20 34 400 30 430 392 300 1.558 304 430.6 42.6
108 800 500 18 32 400 30 430 392 300 1.525 31.0 430.8 43.6
109 800 500 18 36 400 30 430 380 300 1.525 31.0 430.8 43.6
110 800 500 18 34 420 30 430 360 300 1.517 31.2 433.2 47.4
111 560 500 18 34 420 30 430 392 300 1.401 28.6 434.0 42.4
112 1040 500 18 34 420 30 430 392 300 1.603 33.8 433.8 52.6
113 800 450 18 34 420 30 430 392 300 1.419 31.0 433.2 47.0
114 800 550 18 34 420 30 430 392 300 1.616 31.6 433.4 48.0
115 800 500 16 34 420 30 430 392 300 1.481 324 433.8 49.4
116 800 500 20 34 420 30 430 392 300 1.552 30.2 433.4 46.0
117 800 500 18 32 420 30 430 392 300 1.517 31.2 433.2 47.4
118 800 500 18 36 420 30 430 392 300 1.517 31.2 433.2 47.4
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Failure Surfaces of Problem 2

H — . Mean Values
Water Elevation = 400 C Qevee) = 560
C (levee) = 1040

- « = - Rate = 16
------ Rate = 20

440

420 +

400

380

360 4 $ t + + + } +

-80 -80 -40 -20 0 20 40 60 80 100

Figure 25. Failure surfaces for example problem 2, water elevation = 400
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Failure Surfaces of Problem 2
Water Elevation = 420°

Mean Values
C (levee) = 560
C (levee) = 1040

-80 -60 -40 -20 0] 20 40

—-—-Rate=16
------ Rate = 20
440
420 -
400
380
860 : i : : : ; ;

80 100

Figure 26. Failure surfaces for example problem 2, water elevation = 420

66 AeN 82
9G5-2-0TTT 113



T.-9

Slope Stability Analysis Wolff & Ramon
Problem 2 September 1994
Water Ht = 0
Water El = 400
Variance % of
c(levee) c(profl) rateofc  ¢(sub) FS componen variance
mean 800 500 18 34 1.525
560 500 18 34 1.405
1040 500 18 34 1.615] 0.011025] 49.7047
800 450 18 34 1.425
800 550 18 34 1.625| 0.010000f 45.0836
800 500 16 34 1.490
800 500 20 34 1.558] 0.001156 5.2117
800 500 18 32 1.525
800 500 18 36 1.525 0 0.0000
Total 0.022181 100.00
E[FS] = 1.525 E[lnFS]= 0.417248
Var[FS] = 0.022181
sigma[FS] = 0.148933 sigmalin FS]= 0.097429
V(FS) = 9.77% Beta= 4.2826
Fscit=___ 1] IN(FS crit) = 0 | Pr(f) = 9.244E-06|

Figure 27. Reliability calculations for undrained slope stability, example problem 2, water height = 0, water elevation = 400
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Slope Stability Analysis Wolff & Ramon
Problem 2 September 1994
Water Ht = 20/
Water El = 420
Variance % of
c(levee) c(profl) rateofc  ¢(sub) FS component variance
mean 800 500 18 34 1.517
560 500 18 34 1.401
1040 500 18 34 1.603] 0.010201] 48.2009
800 450 18 34 1.419
800 550 18 34 1.616] 0.009702] 45.8443
800 500 16 34 1.481
800 500 20 34 1.552| 0.0012603 5.9548
800 500 18 32 1.517
800 500 18 36 1.517 ] 0.0000
Total 0.0211635 100.00
E[FS] = 1.517 EflnFS]= 0.4121575
Var[FS] = 0.021164
sigma[FS] = 0.145477 sigmalin FS]= 0.0956783
V(FS) = 9.59% Beta= 4.307742871
Fscit=___ 1] In(FS crit) = 0 | Pr(f)= _ 8.252E-06]

Figure 28. Reliability calculations for undrained slope stability, example problem 2, water height = 20, water elevation = 420
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Example Problem 2
Conditional probability of slope failure as a function of flood water height H

H Pr(f)
0 8.25E-06 1.00E+00

20 9.24E-06 9.00E-04

8.00E-01

7.00E-01

6.00E-01

5.00E-01

Pr(failure)

4.00E-01

3.00E-01

2.00E-01

1.00E-01

0.0QE+00

o [—

10
H; ft

12

14

16

18

Figure 29. Conditional probability function for undrained slope failure, example problem 2
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Example Problem 2
Conditional probability of slope failure as a function of flood water height H

1.00E-05
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Figure 30. Conditional probability function for undrained slope failure, example problem 2, enlarged view
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Discussion

As none of the critical failure sfaces for problem 2 for any of the analysis
cases cut into the underlying foundation sands, all of the probability of failure
values are low, on the order of 40 , and are essentially insensitive to floodwater
elevation. This is in general @gment with Bgineering experience; failures of
clay slopes are not, in general, related to pool level during the time of inundation.
They may, however, be related to pore pressures remaining in an embankment
after a flood haseceded.
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8 Slope Stabilit y Anal ysis for
Lon g-Term Conditions

“Long-term conditions” are defined as the conditions prevailing at the time
when any excess pore pressures due to shear have had sufficient time to dissipate,
and stability analyses may be modeled using drained streagtimeters in both
clay and sand. No examples for slope stability analysis using drained strength
parameters for clays are presented in this report. In general, levees subjected to
flood loadings would be expected to be loaded for a sufficiently short time that
undrained conditions would prevail in clayey materials. Where it is considered
that flood durations could be of long enough duration that drained (steady
seepage) conditions could develop in clayey embankments or foundations,
analyses similar to those in Chapter 7 could be performed. Alternatively, the
Taylor’s series method could be applied to the infinite slope method of analysis.

As the coefficients of variation for drained strengingmeters are typically
considerably smaller than those for undrained strength parameters, the probability
of failure would be expected to be less than for the undrained case. Y98I)(

(also cited in HarrX987)) showed that for well-dgeed dam embankments, the
probability of failure for long-term, steady seepage conditions analyzed using
drained strengths can be several orders of magnitude lower than for short-term
(after construa@bn) conditions analyzed using undrained strengths.
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9 Throu gh-Seepage Analysis

Introduction

Definition

Three types of internal erosioniping can occur as a result of seepage
through a levee:

a. If there are cracks in the levee due to hydrdtdictuiing, tensile stresses,
decay of vegetation, or animal activity along the contours of hydraulic
structures, etc., where the water will have a preferential path of seepage,
piping may occur. For piping to occur, the tractive shear stress exerted by
the flowing water must @eed the critical tractive shear stress of thik s

b. High exit gradients on the downstream face of the levee may cause piping
and possible progressive backward erosion. This is the same phenomenon
which was addressed in Chapter 6 and piping occurs when the exit
gradient exceeds the critical exit gradient.

c. Internal erosion (suffusion) or removal of fine grains by excessive seepage
forces may occur. This type of piping occurs when the seepage gradient
exceeds a critical value.

Design pr actice

Quantitative erosion analyses are not routinely performed for levee design in
the Corps of Engineers, although erodibility is implicity considered in the
specification of erosion-resistant embankment materials. For design of sand
levees, the procedures used by the Rock Island District based on research by
Schwartz (1976) do ihede some @ments of erden analysis. However, the
result of the method is to determine the need for providing toe berms according to
a semi-empirical criterion rather than to directly determine the threshold of
erosion conditions or predict whether erosion will occur. Presumably, some
conservatism is present in the berm criteria and thus the criteria do not represent a
truelimit state Well-constructed clay levees are generally considered resistant to
internal erosion, but such erosion can occur where there is a pre-existing crack,
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defect, or discontinuity and the clay is erodible or dispersive under the effect of a
locally high internal gradientObserved erasn problems in clay embankments
have occurred in cases such as poor compaction around drainage culverts and
where dispersive clays are present.

Determ inistic models

There is no single widelycaepted analytical technique or performance
function in common use for predicting internal erosion. As probabilistic analysis
requires the selection of such a function upon which to calculate probability
values, it will be Bcessary to choose one or two for purposes of illustration
herein. Review of various erosion models indicates that erodibility is taken to be
a function of some set of the followinggameters:

a. Permeability or hydraulic conductiviky
b. Hydraulic gradient.
c. Porosityn.

d. Critical stress, (the shear stress required for flowing water to dislodge a
soil particle).

e. Particle size, expressed as some representative size dhgioab .,
f. Friction angleg or angle of repose.

Essentially, the analyses use the gradient, critical tractive stress, and particle
size to determine whether the shear stresses induced by seepage head loss are
sufficient to dislodge soil particles, and use the gradient, permeability, and
porosity to determine whether the seepage flow rate is sufficient to carry away or
transport the particles once they have been dislodged. Grain size and pore size
information may also be used to determine whether soils, once dislodged, will
continue to move (piping) or be caught in the adjacent soil pores (plugging).

It is commonly known that very fine sands and silt-sized materials are among
the most erosion-susceptible soils. This arises from their having a critical balance
of relatively high permeability, low particle weight, and low critical tractive
stress. Particles larger than fine sand sizes are generally too heavy to be moved
easily, as particle weight increases with the cube of §laeticles smaller than
silts (i.e., clay sizes), although of light weight, may have relatively large electro-
chemical forces acting on them, which cabhstantially increase the critical
tractive stress,, and also have sufficiently small permeability as to inhibit
particle transport in significant quantity.
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The models considered herein to illustrate probabilistic erosion analysis are:
a. Work by Khilar, Folger, and Gray985) for clay embankments.

b. The Rock Island District procedute.

c. Extension of the work by Khilar, Folger, and Gra9g5).

In the event that other erosion models are adopted as Corps policy at some
later time, or in cases where geotechnical engineers have experience with other
erosion models, such models can Hessituted for thallustrated methods, using
the same approach of defining the probability of failure as the probability that the
performance function crosses the limit state.

Erosion model of Khilar, Folger, and Gray

Khilar, Folger, and Grayl@85)investigated the potential for clay soils to
pipe or plug under induced flow gradients using a mathematical analysis of a
cylindrical opening in the soil. In eaclerient of the dinder, the tendency for
soil dispersion depends on the dissolved solids content of the water (function of
the upgradient erosion) and the exchangeable sodium percenttje \{iBere
the latter parameter is defined as:

ESP - N&*
CEC

x 100% (20)

In the above equatioia* is the exchangeable sodium aDEC s the cation
exchange capacity.

The tendency for plugging or piping depends on the capability for particle
capture at the pore throats. Soil and water samples from Corps of Engineers’
Districts throughout the United States were used in laboratory verification
studies. Khilar, Folger, and Gray defined two lumpadametersiN., andN .

For erosion to initiate\. should initially be greater thas,, which means that
“the initial flow rate should be sufficient to produce a shear stress which is
greater than the critical shear strestor the particular soil-water system.” When
these parameters are set equal to each other, the following expression for the
pressure gradient required to sustain erosion results:

1/2
AP} _ T | (21)
AL)  2.828( K,

! personal Communication, 1993, S. Zaidi, U.S.yAErgineer District, Rock Island; Rock Island,
IL.
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where
AP/AL = pressure gradient in units of pressure per length
T, = critical tractive shear stress
n, = initial porosity

K, = initial intrinsic permeability in units of length (for water at 20,
whenk=1x10 cm/sec, K=10 &€m)

asAP/AL =iy,, the above expression can be rewritten as:

1/2
e o [n—) 22)
2878, | K,

which provides a measure of the critical gradient required to cause piping.

The critical shear stress can vary widely, with values for clay ranging from
less than 0.2 to more than 20 dyneg/cm , depending on the soil pore fluid
concentration, dielectric dispersion, and sodium absorption ratio. These are
parameters not generally available to geotechnical engineers doing preliminary
economic analyses of existing levees. However, it can be shown that, in most
cases, the gradients required for clay soils are so high as to not be expected in
levee embankments and hence the probability of failure due to internal erosion
may be small in comparison to other more dominant modes. For example, Khilar,
Folger, and Grayl©85) use thedllowing to check the criterion by Arulanandan
and Perry (1983) thabi can be considered nonerodible jf> 10 dynes/ch .

Assumen = 0.4 andk, = 10" cnf k= 10° cm/sec). Then, according to the
above equation,

2
. 10 dynes/crh &‘( 0.4 ) _ 208 (23)

°  2.828 980.7 dynes/chy 10 %cn?

As hydraulic gradients on the orderaffO sédom occur in earth
embankments, or in laboratory experiments such as the pinhole test, piping
erosion is generally not observed at such for materials with critical tractive
stresses as large as 10 dyne$/cm .

Rock Island District procedure for sand levees
The Rock Island District procedure to ensure the erosion stability of the

landside slope of sand levees involves the calculation of &nangeters, the
maximum erosion susceptibility and the relative erosion susceptibiRy The



ETL 1110-2-556
28 May 99

calculated values are compared to critical combinations for which toe berms are
considered necessary. The parameters are functions of the embankment geometry
and soil properties. To analyze stability, first the vertical distance of the seepage
exit point on the downstream slopeis determined using the well-known solu-

tion for “the basic prabola” by L. Casagrande. Two parameteendA, are then
calculated as:

_ Yw o Ysat SinB

A, = - Msigtan@ -8) - =t SE

- cof - Msiptanp-3) - J=2TH (24)
A, = y.sift7p | 0'6[|<tan¢5—6)]°-6 (25)
2~ Yw 1.49

where

= downstream slope angle
& = zero for a horizontal exit gradient
n = Manning'’s coefficient for sand, typically 0.02
Yo = Saturated density of the sand in fb/ft
¥, = Submerged effective density of the sand in3b/ft
k = permeability in ft/s
¢ = friction angle

It is important to note that the parametgis not dimensionless, and the units
stated above must be used.

The erosion susceptibilitygpameters are then calculated as:

A 0.6
M- e (26)
AT,
AT 1.67
— 1=
R - " [ Ao ) @7)
) H
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In the above equations, is the critical tractive stress, which the Rock Island
District takes as typically about 0.03 IB/ft (14.36 dyneg/cm ) for medium sand,
andH is the full embankment height, measured in feet. Again, it should be noted
that the parameteid andR values are not dimensionless, and must be calculated
using the units shown. According to the Rock Island design criteria, toe berms
are recommended whéhandR values fall above the shaded region shown in
Figure 31. To simplify probabilistic analysis, Shannon and Wilson, Inc., and
Wolff (1994) suggested replacing this region with a linear approximation (also
shown in Figure 31), and taken to be the limit state. The linear approximation is
represented by the following equation:

M+144R-13.0=0 (28)
Maximum Erosion Susceptibility, M

20
15
10
5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Relative Erosion Susceptibility, R

Figure 31. Rock Island District berm criteria and linear approximation of limit
state

Positive values of the expression to the left of the equals sign indicate the need
for toe berms.

Extens ion of Khilar's model to sandy  materials

Khilar's model was developed fooits with a sufficient cohesive component
to sustain an open crack. For these soils, it has been shown that very high
gradients, much higher than would typically be found in flood control levees, are
necessary to initiate piping.

However, if the same equation given above is considered for silty and sandy
materials, reasonable results are obtained that are consistent with engineering
expectations of what gradients might initiate piping in such materials. Knowing
theD,, andD,,grain sizes, reasonable estimates of the permedbdity the
critical tractive stress, can be made and substituted iml&r's equaibn. The
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critical tractive stress for granular materials can be estimated fro tk&e
(Lane 1935) as:

T, (dynes/crh ) =10 x 3 (in mm) (29)

The permeabilitk can be estimated from tlg, grain size using the well-
known correlation developed for Mississippi River levees published in TM3-424
(U.S. Army Corps of Engineefi956a).

Table 13 summarizes the critical gradients calculated using the above proce-
dure for three granular materials from which a levee might be constructed. It is
noted that the relative magnitudes of the calculated critical gradients appear rea-
sonable and this procedure might be considered as a possible approach for initial
evaluation of the erodibility of existing granular levees. However, it should also
be noted that internal gradients in a pervious levee will generally be below these
values, and will seldom eged 0.20unless local discontinuities are present.

able 13
Calculated Critical Gradients for Three Gra  nular Soils Using
Khilar's Equation

Critical
Soil D, mm |T., dynes/cm? P ;,,mm k, cm/sec gradient
"Uniform fine sand 0.1 1.0 0.09 150 x 10 0.59
"Silty gravelly sand 0.4 4.0 0.005 10 x 10* 9.1
"Coarse to medium sand ]1.8 18.0 0.3 2,000 x 10* 2.9

Example Problem 1: Sand Levee on Thin Uniform
Clay Top Stratum

The erosion resistance of example problem 1 will be evaluated using two
techniques, as follows:

a. The Rock Island criteria.

b. The extended Khilar model.

The embankment soil will be taken to be a coarse-to-medium sand similar to
that in the third row of Table 13. Random variables aaeactierized as shown
in Table 14.

The analysis for the Rock Island method and the Khilar equation method was
performed using a spreadsheet extended from one previously developed by

Shannon and Wilson, Inc., and Wolff994). An example of the spreadsheet is
shown in Figure 32.
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Table 14
Random Variables for Internal Erosion Analysis, Example
Problem 1

Coefficient Rock Island

Variable Expected Value f Variation Model Khilar's Model
Mannings coefficient, n 0.02 10% *
Unit weight, Y., 125 Ibfft® 8% *
Friction angle, ¢ 30 deg 6.7% *
Coefficient of permeability, Kk |2,000 x 10* cm/s  |30% * *
Critical tractive stress, T 18 dynes/cm? 10% * *

Rock Island District method

For the Rock Island District method, which assesses erosion at the landside
seepage face, the method was numerically unstaplee¢omes negative) for the
slopes assumed in example problem 1. To make the problem stable, the slopes
had to be flattened to 1V:3H riverside and 1V:5H landside.

The results for the Taylor series analysis for a 20-ft water height are
summarized in Table 15. Results for other heights are shown in the spreadsheets
in Figures 33 through 37.

Table 15
Results of Internal Erosion Analysis, = Example Pr oblem 1 (Modified
to Flatter S lopes) H = 20 ft, Rock Island District Method
Percent

Yoot T. Performance |ariance f Total
n b/t | k x 10*cm/sec  [dynes/cm ?Kunction Jomponent  Vdriance
0.02 125 30 2000 18 17.524
0.022 |125 30 2000 18 18.491
0.018 |125 30 2000 18 16.515 0.9761 21
0.02 135 30 2000 18 14.798
0.02 115 30 2000 18 23.667 19.6648 429
0.02 125 32 2000 18 14.817
0.02 125 28 2000 18 22.179 13.5498 295
0.02 125 30 2600 18 20.321
0.02 125 30 1400 18 14.339 8.961 19.5
0.02 125 30 2000 19.8 16.046
0.02 125 30 2000 16.2 19.369 2.7606 6.0
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Through Seepage Analysis by Schwartz / Rock Island Method
Piping Analyslis by Khilar Equation

Example Problem 1

Expected Value Case

Slope Geometry Parameters Rock Island Results
Downstream Slope, | on lambda(1) = 0.26
Slope angle, beta, degrees 11.31 lambda(2) = 0.0280
Slope angle, beta, radians 0.20

Upstream Slope, 1 on lambda(1Mlambda(2) =
Slope angle, beta, degrees 18.43 9.39
Slope angle, beta, radians 0.32

Crown width, ft 10.00 M= 4.02
Embankment height, H 20.00 R= 0.09
Water height, h 10.00

Base Width, ft 170.00 M+ 14.44R-13.0=
Length of slope under water, m, ft 50.00 ‘ m:ﬂ
hasie narahola. g, ft 135.00

Ssubo, ft 135.37

a, ft 9.97

Exit point y sub e, ft 1.96

Exit gradient parameters Internal Erosion Model

Exit gradient orientation, delta, degrees m Embankment

Exit gradient orientation, delta, radians 0 seep drop = 8.04
length = 110.22

Sand parameters i= 0.073

Manning's roughness for sand 0.02 icrit= 2.903

Gamma sat for sand, pef 125 i FS= 39.78]

Gamma buoyant, pcf 62.6

Friction angle, phi, degrees

Friction angle, phi, radians 0.523599

Sand permeability, k, cm/sec

Sand permeability, k, ft/sec 0.006562

Intrinsic permeability, K, cm42 0.000002

porosity 0.4

tau sub c, psf

tau sub ¢, dynes fcm*2 18.00

Figure 32. Spreadsheet for through-seepage analysis

It is noted that the most significant random variables, based on descending
order of their variance components, are the unit weight, the friction angle, and the
permeability. The effects of Manning’s coefficient and the critical tractive stress,
at least for the coefficients of variation assumed, are relatively insignificant.

28 May 99
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Internal Erosion Analysis T. F. Wolff
Rock Island Method, 1 on 3RS, 1on 5 LS September 1994
file:tsts01.xls
X —
gamma perf Variance % of
n sat phi k tau function component varance
mean 0.02 125 30 2000.00 18.00 -11.236
0.022 125 30 2000.00 18.00f -11.129
0.018 125 30 2000.00 18.00f -11.349 0.0121 2.16
0.02 135 30 2000.00 18.00] -11.549
0.02 116 30 2000.00 18.00f -10.579 0.2352 42.06
0.02 125 32| 2000.00 18.00] -11.546
0.02 125 28| 2000.00 18.00] -10.734 0.1648 20.47
0.02 125 301 2600.00 18.00] -10.931
0.02 125 30] 1400.00 18.00] -11.603 0.1129 20.19
0.02 125 30 2000.00 19.801 -11.403
0.02 125 30 2000.00 16.20] -11.033 0.0342 6.12
Total 0.5593  100.00
E[PF]= -11.236
Var[PF]= 0.559282 beta=  15.024
sigma[PF] = 0.747852 Pr(fail) = 0

Figure 33. Reliability calculations for through-seepage, example problem 1, h=5 ft

66 Ae|N 8¢
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Internal Erosion Analysis T. F. Wolff
Rock Island Method, 1 on 3RS, 1on 5LS September 1994
file:tsts02.xls
h=[" 10]
gamma perf Variance % of
n sat phi k tau function component variance
mean 0.02 125 30 2000.00 18.00 -7.703
0.022 125 30  2000.00 18.00 -7.457
0.018 125 30 2000.00 18.00 -7.968 0.0653 2.14
0.02 135 30 2000.00 18.00 -8.419
0.02 115 30 2000.00 18.00 -6.141 1.2973 42.56
0.02 125 32| 2000.00 18.00 -8.414
0.02 125 28] 2000.00 18.00 -6.518 0.8987 29.49
0.02 125 30 2600.00 18.00 -6.989
0.02 125 301 1400.00 18.00 -8.541 0.6022 19.76
0.02 125 30 2000.00 19.80 -8.091
0.02 125 30 2000.00 16.20 -1.232 0.1845 6.05
Total 3.0480 100.00
E[PF]=  -7.703
Var[PF] = 3.047952 beta = 4.412
sigma[PF] = 1.745838 Pr(fail) = 5.12E-06

Figure 34. Reliability calculations for through-seepage, example problem 1, h=10 ft

66 Ae|N 8¢
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Internal Erosion Analysis T. F. Wolff
Rock Island Method, 1 on 3 RS, 1on 5§ LS September 1994
file:tsts03.xls
h=" 18]
gamma perf Variance % of
n sat phi Kk tau function component variance
mean 0.02 125 30 2000.00 18.00 -1.700
0.022 125 30 2000.00 18.00 -1.250
0.018 125 30 2000.00 18.00 -2.180 0.2162 2.16
0.02 135 30 2000.00 18.00 -2.980
0.02 115 30 2000.00 18.00 1.150 4.2842 42.56
0.02 125 32| 2000.00 18.00 -2.980
0.02 125 28| 2000.00 18.00 0.466 2.9687 29,63
0.02 125 30| 2600.00 18.00 -0.398
0.02 125 30| 1400.00 18.00 -3.200 1.8628 19.59
0.02 125 30 2000.00 19.80 -2.400
0.02 125 30 2000.00 16.20 -0.841 0.8076 6.06
Total 10.0196  100.00
E[PF] = -1.700
Var[PF]= 10.0198 beta = 0.537
sigma[PF] = 3.165375 Pr(fail) = 0.295613

Figure 35. Reliability calculations for through-seepage, example problem 1, h =15 ft

66 Ae|N 8¢
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Internal Erosion Analysis T. F. Wolff
Rock Island Method, 1 on 3RS, 1on 5 LS September 1994
file:tstsO4.xls
h= 17
gamma perf Variance % of
n sat phi k tau function component varlance
mean 0.02 125 30 2000.00 18.00 3.319
0.022 125 30 2000.00 18.00 3.921
0.018 125 30 2000.00 18.00 2.691 0.3782 2.13
0.02 135 30 2000.00 18.00 1.619
0.02 115 30 2000.00 18.00 7.130 7.5928 42.79
0.02 125 32| 2000.00 18.00 1.8632
0.02 125 28] 2000.00 18.00 6.208 5.2349 20.50
0.02 125 301 2600.00 18.00 5.057
0.02 125 30| 1400.00 18.00 1.332 3.4689 19.55
0.02 125 30 2000.00 19.80 2.399
0.02 125 30 2000.00 16.20 4.466 1.0681 6.02
Total 17.7430  100.00
E[PF] = 3.319
Var[PF]= 17.74298 beta=  -0.788
sigma[PF] = 4.212241 Pr{fail) = 0.784635

Figure 36. Reliability calculations for through-seepage, example problem 1, h=17.5 ft

66 Ae|N 8¢
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Internal Erosion Analysis

T. F. Wolff
Rock Island Method, 1 on 3RS, 1on 5 LS September 1994
file:tsts05.xls
h=[____ 20]
gamma perf Variance % of
n sat phi Kk tau function component variance
mean 0.02 425 30 2000.00 18.00 17.524
0.022 125 30 2000.00 18.00 18.491
0.018 125 30 2000.00 18.00] 18.515 0.8761 213
0.02 135 30 2000.00 18.00 14,798
0.02 115 30 2000.00 18.00 23.687 19.6648 42.85
0.02 125 32] 2000.00 18.00 14.817
0.02 125 28| 2000.00 18.00] 22.179 13.5498 20.52
0.02 125 30f 2600.00 18.00 20.321
0.02 125 30| 1400.00 18.00f 14.339 8.9481 19.49
0.02 125 30 2000.00 19.80] 16.046
0.02 125 30 2000.00 16.20] 19.369 2.7606 6.01
Total 45,8974 100.00
E[PFl= 17.524
VarfPF]= 45.89736 beta = -2.587
sigma[PF] = 6.774759 Pr{fail) = 0.995154

Figure 37. Reliability calculations for through-seepage, example problem 1, h=20.0 ft

66 Ae|N 8¢
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When the probabilities of failure from the individual spreadsheet solutions are
plotted, the result is the conditional probability of failure function shown in
Figure 38. Again, it takes the expected reverse-curve shape. Below heads of
10 ft, or about half the levee height, the probability of failure against through-
seepage failure is virtually nil. The probability of failure becomes greater than
0.5 for a head of about 16.5 ft, and approaches unity at the full head of 20 ft.

Khilar equation

The analysis was repeated using the original geometry for example problem 1
and using Equation 21 to predict the critical gradient for piping. The actual
gradient was estimated as the head loss from the riverside water elevation to the
landside slope exit point (based on the basafalpola)ivided by the horizontal
distance between these two points. The factor of safety was taken as the critical
gradient divided by the actual gradient. As shown in the spreadsheets in
Figure 39, the reliability index values were greater than 12, even for a full head
on the levee, corresponding to a nil (£10 ) probability of failure.

Example Problem 2: Clay Levee on Thick Non-
uniform Clay Top Stratum

For any reasonable values of the critical tractive stress and permeability for
clays, the calculated factors of safety were extremely lardieating that the
probability of failure against piping would be nil in well-constructed clay
embankments. It is understood that piping may still occur at undetected areas of
poor construction or defects, but analytical models for such conditions are not
available, requiring that probability values be estimated judgmentally or based on
historical data.
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Example Problem1 ~10n3RS,10n56 LS, Rock Island Criteria
Conditional Probability of Through Seepage Failure as a function of flood water height H

H Pr(f) 000
0.0 0 : &
5.0 0 0.900 //
10.0 0.000 0.800 A
15.0 0.296 0.700 Va
17.5 0.785 T 0600 /
20.0 0.995 2 o500 ’
£ /
a 0400
0.300 7’:./
0.200
0.100
0.000 —{¥
0.0 20 4.0 6.0 8.0 10.0 120 14.0 16.0 18.0 20.0
H, it

Figure 38. Conditional probability of failure function for through-seepage, example problem 1 (modified)
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Internal Erosion Analysis T. F. Wolff

Khilar Equation, Example Problem 1 September 1994
file:tsts10.xls
H= 20
Variance % of
k tau FS component  varlance
mean 2000.00 18.00 9.690
2600.00 18.00 8.500
1400.00 18.00 11.580 2.37 71.60
2000.00 19.80 10.650
2000.00 16.20 8.710 0.94 28.40
Total ' 3.31 100.00
E[FS] = 9.690 Var{lnFS] = 0.034670333
Var[FS] = 3.3125 sigma[lnFS}= 0.186199713 beta= 12104
sigma[FS] = 1.820027472 E[inFS] = 2.253759259 Pr{fail) = 0
V(FS)= 0.187825333

Figure 39. Reliability calculations for internal erosion analysis using modified Khilar's equation

9GG-¢-0TTT 113
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10 Surface Erosion

Introduction

As flood stages increase, the potential increases ffacsuerosion from the
following two sources:

a. Erosion due to excessive current velocitiasafiel to the levee slope.
b. Erosion due to wave attack directly against the levee slope.

The Corps of Engineers provides protection against these events for new
construction by providing adequate slope protection, typically a thick grass cover
for most levees, and stone revetment at locations expected to be susceptible to
wave attack. During floodmergencies,dalitional protection may be provided
where necessary using dumped rock, snow fence, or plastic sheeting.

Erosion Due to Current Velocity

Analytical model

Although there are criteria for decision-making relative to the need for slope
protection and the design of slope protection, they are not in the form of a limit
state or performance function (i.e., one does not typically calculate a factor of
safety against scour). To perform a reliability analysis, one needs to define the
problem as a comparison between the probable velocity and the velocity that will
result in damaging scour. Considerable research could be undertaken to derive an
appropriate model. As a first approximation for the purpose of illustration, this
chapter will use a simple adaptation of Manning’s formula for average flow
velocity and assume that the critical velocity for a grassed slope can be expressed
by its expected value and coefficient of variation.

Velocity. For channels that are very wide relative to their depth (width >
10xdepth), the velocity can be expressed as:
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1_48@2/3 Sl/Z
n

V- (30)

where

y = depth of flow

S=slope of the energy line

n = Manning’s roughness coefficient

For the purpose of illustration, it will be assumed that the velocity of flow
parallel to a levee slope for water heights from 0 to 20 ft can be approximated
using the above formula with y taken from 0 to 20 ft. For real levees in the field,
it is likely that better estimates of flow velocities at the location of the riverside
slope can be obtained by more detailed hydraulic models (sg&&HEM2-1418
(U.S. Army Corps of Engineefi994)).

For purposes of illustration, the following probabilistic moments are assumed.

More detailed and site-specific studies would beessary to determine
appropriate values.

E[§ - 0.0001 V, - 10% (31)

E[n] - 0.03 V, = 10% (32)

Critical velocity. For purposes of illustration, it is assumed that the critical
velocity that will result in damaging scour can be expressed as:

E[V

crit

] = 5.0 ft/sec Vit = 20% (33)

Further research is necessary to develop guidance on appropriate values for
prototype structures.

Calculation of reliability index and probability of failure

The Manning equation is of the form

G(X,, %, X5 - - ) = X X2 x$° (34)

B-95



ETL 1110-2-556

28 May 99

B-96

For equations of this form,atlr (L987) shows that the prolibdtic moments
can be easily determined using a special form of the Taylor’s series approxima-
tion he refers to as thwector equation In such cases, the expected value of the
function is evaluated as the function of the expected values. The coefficient of
variation of the function can be calculated as:

VE = gy V2(x) + G V200) + s VX)) + .. (35)
For the case considered, the coefficient of variation of the flow velocity is then:

VARV [1) V2 (36)

Note that, although the velocity increases with floodwater hgjghe coefficient
of variation of the velocity is constant for all heights.

Knowing the expected value and standard deviation of the velocity and the
critical velocity, a performance function can be defined as the ratio of critical
velocity to the actual velocity, (i.e., the factor of safety) and the limit state can be
taken as this ratio equaling the value 1.0. If the ratio is assumed to be
lognormally distributed as described in Annex A, then the reliability index is:

{5) A%
g _\ED) _ "\ BV 37)
Vg + VS szcrit + sz

and the probability of failure can be determined from the cumulative distribution
function for the normal distribution.

Results

The assumed model and probabilistic moments were used to construct the
example spreadsheet in Figure 40, which calculates expected values and standard
deviations of the flow velocity, the reliability index, and the probability of failure,
all as functions of the flood water height y. It is again observed that a typical
levee may be highly reliable for water levels up to about one-half the height, and
then the probability of failure may increase rapidly.
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Demonstration Spreadsheet for Surface Erosion Analysis
Expected Coefficlent Standard
Value of variation Deviation
Slope S=|  0.0001 V(s) = 0.1 0.00001
Manning's roughness ne 0.03 V(n) =; 0.1 0.003]
Scouring velocity Veit=[ 5| v(verity =[ 0.2] | 1]
Water height, y  E[V] V(v) sigmav In(ENVJE[Verit]) sqrivA2+VA2)  beta Pr(faiture)
fifsec (log)
0 0000 0.1118 0.000
1 0495 01118 0.055 2312 0.22912878 10.09 4]
2 078 0.1118 0.088 1,850 0.22912878 8.07 3.33E-16
3 1030 01118 0.115 1.580 0.22912878 6.89 2.73E-12
4 1248 04118 0.140 1,388 0.22912878 6.06 6.97E-10
5 1448 0.1118 0.162 1239 0.22912878 541 3.2E-08
6 1636 0.1118 0.183 1117  0.22912878 4.88 5.39E-07
7 1813 014118 0.203 1.015 0.22912878 4.43 4.75E-06
8 1.981 0.1118 0.222 0.926 0.22012878 4.04 267E-05
9 2143 0.1118 0.240 0.847 0.22912878 3.70 0.000108
10 2209 0.1118 0.257 0.777 0.22912878 3.33 0.000349
11 2450 01118 0.274 0.713 0.22912878 3.11 0.000925
12 2.85% 0.1118 0.260 0.655 0.22912878 2.86 0.002116
13 2739 01118 0.306 0.602 0.22912878 2.63 0.004302
14 2877 01118 0.322 0.553 0.22012878 2.41 0.007937
1% 3013 01118 0.337 0.507 0.22912878 221 0.013516
16 3145 0.1118 0.352 0.464 0.22912878 2.02 0.021523
17 3275 0.1118 0.366 0.423 0.22912878 1.85 0.032383
18 3.402 0.1118 0.380 0.385 0.22912878 1.68 0.046423
19 3527 01118 0.394 0.349 0.22912878 162 0.063847
20 3650 0.1118 0.408 0.316 0.22912878 1.37 0.084718
0.09
0.08 7
007
_ 008 /
§ oos /
£ o004
=4
E om o
0.02 7
001
0 +—0 o o ot :
0 2 4 6 8 10 12 14 16 18 20
Water height, y

Figure 40. Example spreadsheet for surface erosion analysis

Erosion Due to Wind-Generated Waves

The height and frequency of wind-generated waves are dependent on wind
speed, duration of the wind, fetch (over-water distance wind travels while
generating waves), and depth of water. Asflood stages increase, the potentia for
wave attack increases due to the increase in fetch and depth of water. The
relative effect of wave-caused erosion is highly site-specific, and will vary
significantly depending on such factors as direction of exposure to wind waves,
whether timber stands exist to shield the levee from wave attack, steepness of the
levee dope, and nature of the embankment material.
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Wave-caused erosion during prolonged flooding has occurred on the upper
Mississippi River where appreciable fetch exists. This is especially a problem in
the Rock Island District where levees are constructed of dredged sand and to a
lesser degree in the St. Louis District at locations where specific site conditions
favorable to wave-caused erosion are present.

Wave-caused erosion is a complicated problem and has not at this time been
reduced to an appropriate model which could be used to perform a reliability
analysis.
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11 Combining Conditional
Probability Functions and
Other Considerations

Combining Probability Functions

Once a conditional probability of failure function has been obtained for each
considered failure mode, it is desired to combine them to determine the total
conditional probability of failure of all modes combined as a function of the
floodwater elevation (FWE).

As a first approximation, it may be assumed that each of the following four
failure modes are independent and hence uncorrelated:

a. Underseepage.

b. Slope stability.

c. Through-seepage and internal erosion.
d. Surface erosion.

This assumption is noeressarily true, as some of the conditions increasing
the probability of failure for one mode may likely increase the probability of
failure by another. However, there is insufficient research to better quantify such
possible correlation, and it is beyond the scope of the present project. Assuming
independence considerably simplifies the mathematics involved, which is also a
desired condition for studies at the level of economic analysis.

For underseepagethe probability of failure at each water elevation is taken
as that determined in Chapter 6; i.e., the probability of developing an upward
gradient sufficient to cause boiling throughout the top stratum.

Forslope stability, the probability of failure is taken as the probability that the

factor of safety is less than unity, and it is assumed that the factor of safety is
lognormally distributed. It isetessary to determine whether modeling
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short-term conditions only is sufficient, or whether itésessary to also model
long-term conditions and post-flood conditions in the analysis. For the two
examples given, only short-term analyses are considered; however, the probability
of failure could also be evaluated for these other cases using the same techniques.
In such cases, they would not be combined with other failure modes as illustrated
in this section, as they are not concurrent events.

Forthrough-seepage and internal erosiarthe results of the Rock Island
District method will be used herein for example 1. The probability of failure is
taken as the probability that a function for which a zero value approximates the
Rock Island berm criteria in fact assumes a negative value. The performance
function is assumed to be normally distributed. It should be recalled that the
assumed slopes had to be flattened to make the method numerically stable and the
resulting conditional probability of failure function is thus not for the same levee
section as those for other modes. It is retained for illustrative purposes to show
how probability functions can be combined. For the assessment of internal ero-
sion based on the Khilar, Folger, and GrB985) pipng model, the probabilities
of failure appear to be so low as to be negligible.

For surface erosiona conceptual example based on the Manning equation
for flow velocity was illustrated for this report. Additional research needs to be
performed to determine the most appropriate way to model the probability of
surface erosion, for both current and wave attack, considering the current state-of-
the-practice in the Corps of Engineers.

Judgmental evaluation

It is required that a levee under consideration be field inspected. During such
an inspection, it is likely that the inspection team may encounter any number of
items and features, in addition to the three to four quantified failure modes, that
may compromise the confidence of the levee section during a flood event. These
might include animal burrows, cracks, roots, and poor maintenance that might
impede detection of defects or execution of flood-fighting activities. To provide a
mathematical means to factor in such information, one may develop a judgment-
based conditional probability function by answering the following question:

Discounting the likelihood of failure accounted for in the quantitative
analyses, but considering observed conditions, what would an experienced
levee agineer consider the probability of failure of thesséefor a range of
water elevations?

For the two example problems considered herein, the functions listed in
Table 16 were assumed. While this may appear to be “outright guessing,”
leaving out such information has the greater danger of not considering the
obvious. Formalized techniques for quantifying expert opinion (such as the
Delphi method) exist and merit further research for application to the economic
analysis of existing levees and existing structures.
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+Table 16
Assigned Conditional Probability of Failure Functions for
Judgmental Evaluation of Observed Conditions

Probability of Failure Probability of Failure
Floodwater Elevation Example 1 Example 2
400.0 0 0
405.0 0.01 0.005
410.0 0.02 0.01
415.0 0.20 0.02
4175 0.40 0.05
420.0 0.80 0.10

Combinatorial probabilities

For N independent failure modes, the reliability, or probability of no failure
involving any mode, is the probability of no failure due to modedno failure
due to mode 2andno failure due to mode 3, etc. Aadimplies multiplication,
the overall reliability at a given floodwater elevation is the product of the modal
reliability values for that flood elevation, or:

R = RysRssRrsRseR; (38)

where the subscripts refer to the identifieitlife modes. Hence the probability
of failure at any floodwater elevation is:

Prf) - 1-R (39)
= 1-(1-pys) (1-psg (1-Prg (1-Psp) (1-py)

The total conditional probability of failure functions calculated for the two
example problems are shown in Figures 41 and 42. It is observed that probabili-
ties of failure are generally quite low for water elevations less than one-half the
levee height, then rise sharply as water levels approach the levee crest. While
there are insufficient data to judge whether this is a general trend for all levees, it
has some basis in experience and intuition.
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Conditional Probabillity of Fallure Function for
Example Problem 1
Flood Water Underseepage Slope Stability Through Seepage Surface Erosion Judgment Combined
Elevation P(f) R P(h R P(n R P(f) R P(f) R P{f) R
400.0 0.00000 1.00000 0.00001 0.99999 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00001 0.99898
405.0 0.00008 0.99992 0.00001 0.99999 0.00000 1.00000 0.00000 1.00000 0.01000 0.99000 0.01009 0.98991
410.0 0.00015 0.99985 0.00002 0.99998 0.000C0 1.00000 0.00035 0.99965 0.02000 0.98000 0.02051 0.97948
415.0 0.50000 0.50000 0.00002 0.99998 0.28600 0.70400 0.01352 0.98648 0.20000 0.80000 0.72221 0.27779
417.5 0.70000 0.30000 0.00000 1.00000 0.78500 0.21500 0.03900 0.96100 0.40000 0.60000 0.96281 0.03719
420.0 0.87100 0.12800 0.30870 0.69130 0.99500 0.00500 0.08470 0.91530 0.80000 0.20000 0.99982  0.00008
Probability of Failure vs FWE
1.00000 -
0.90000 +
~ ~&- - Underseepage -
0.80000 R a7 l;:
g 070000 4 ope Stablity /:»’ - il
F 060000 — -A— - Through Seepage - ;‘l} ;7
-~ LA 4
2‘ 0.50000 1 ——Surface Erosion ," /,, //
3 s 7
% 040000 1 ~ X— - Judgmenrt 7 /I //z l
& 030000 1 ,-l/ 7 ’
e=O==Combined - e 7’
0.20000 s 4
- 7’
0.10000 7 b
0.00000 £ " prne(} ’ 7 I"___——_)l"/',
400.0 4020 404.0 406.0 408,0 4100 4120 4140 416.0 418.0 420.0
Fiood Water Elevation

Figure 41. Combined conditional probability of failure function for example problem 1
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Conditional Probabliity of Fallure Function for

Example Problem 2
Flood Water Underseepage Slope Stability Through Seepage Surface Eroslon Judgment Combined
Elevation P(f) R P(f) R P(f) R P{N R PN R P(f)
400.0 0.00000 1.00000 0.00001 0.88999 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00001
405.0 0.00000 1.00000 0.00001 0.99999 0.00000 1.00000 0.00000 1.00000 0.00500 0.99500 0.00501
410.0 0.00000 1.00000 0.00001 0.83999 0.00000 1.00000 0.00035 0.99965 0.01000 0.99000 0.01038
415.0 0.00010 0.99990 0.00001 0.89989 0.00000 1.00000 0.01352 0.98648 0.02000 0.98000 0.03338
417.5 0.00642 0.99358 0.00001 0.99999 0.00000 1.00000 0.03200 0.98100 0.05000 0.95000 0.09292
420.0 0.07830 0.92170 0.00001 0.99999 0.00000 1.00000 0.08470 0.91530 0.10000 0.90000 0.24074
Probability of Failure vs FWE
0.25000
— ~#--+Underseepage
0.20000 4
. - -l - Slope Stabllity
i 0.15000 4 =~ -A~ -Through Seepage
k]
2 - Surface Eroslon
3
-§ 010000 - - X~ - Judgment
'S
w=={Qu==Combined
0.05000 +
0.00000 LL s " " 7 4
400.0 402.0 4040 408.0 408.0 4100 4120 4140 4160 418,0 420.0
Flood Water Elavation

Figure 42. Combined conditional probability of failure function for example problem 2
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Flood Duration

As the duration of a flood extends, the probability of failure inevitably
increases, as extended flooding increases pore pressures, and increases the
likelihood and intensity of damaging erosion. The analyses herein essentially
assume that the flood has been of sufficient duration that steady-state seepage
conditions have developed in pervioupstiatum materials and pervious
embankment materials, but no pore pressure adjustment has occurred in
impervious clayey foundation and embankment materials. These are reasonable
assumptions for economic analysis of most levees. Further research will be
required to provide a rational basis for modifying these functions for flood
duration.

Length of Levee and Spatial Correlation

The analyses illustrated herein are for a two-dimensional levee cross section,
assumed representative of conditions of a reach of levee extending some unspeci-
fied length. Real levees may be a number of miles in length, and reaches are not
in fact discrete entities, but rather a continuum. The details of determining the
probability of failure for the entire length of levee are beyond the scope of this
preliminary report, but several first-cut approximations are noteworthy.

If the levee system were modeled as a series system of discrete independent
reaches, such as links in a chain, the reliability is the product of the reliabilities
for each link, and the same mathematics holds for combining probabilities as
noted above for modes; hence:

R-=RRR...Ry (40)

where the subscripts refer to the @ege reaches. Hence the praligtof
failure for the system is:

Prif) - 1-R
= 1-(1-p) 1-p,) (1-p5) - - . (1-Py) (41)

The problem thus degenerates to that of determining an “equivalent length” of
levee for which the soil properties can be taken as statistically independent of
adjacent reaches. Much research has been done in the areas of spatial correlation,
autocorrelation functions, variance reduction functions, etc., which have a direct
bearing on this problem. However, there are seldom sufficient data to quantify
such functions.
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For practical purposes, pending further researchgiins reasonable to pre-
identify levee reaches that are likely to be low in reliability, analyze one or more
of these, and base the economic evaluation on the most critical reaches, as a levee
system is generally no more reliable than its weakest reach.
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12 Summary, Conclusions,
and Recommendations

Summary

This research effort and report provided a set of “first-cut” examples of the
application of reliability theory to the analysis of several modes of levee perform-
ance. Using the capacity-demand model, a conditional probability of failure func-
tion can be developed for each performance mode as a function of floodwater
elevation. Using eimentary reliaitity theory and assuming an independent
series system, a composite conditional-probabilitfaiture function can then be
calculated that reflects all considered failure modes. The developed methodology
is intended to be used as a component in the economic analysis of existing levees.

Conclusions

This effort was the first by the Corps of Engineers to cast the problem of
predicted geotechnical performance of existing levees in a probalfibstie-
work. Full impkementaibn of a probabilistic approach to levee performance pre-
diction will undoubtedly require additional research, additional developmental
efforts, and experience-building by practicing engineers in the Corps, and deci-
sions by Corps’ policy makers. Nevertheless, a number of conclusions can be
drawn from the analyses of the two example problems presented herein:

a. The template method presented in current guidance for estimating exist-
ing levee reliability does not explicitly account for the several modes of
levee performance (e.g., underseepage) as it does not incorporate
information regarding foundation conditions.

b. The probabilisticapacity-demand modekan be used to develop
conditional-probability-&failure functions for levees as functions of
floodwater elevation. In this approach, the probability of failure is taken
to be a function of the quantified uncertainty in the engineeangnp-
eters used in performance analysis of the levee.
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Forunderseepagenalysis, relatively high probabilities of failure can be
present for some commonly encountered foundation conditions. In the
probabilistic analysis of the example problems, it was found that the top
blanket thickness (z) is the major contributor to the uncertainty in
performance. This is consistent with previous analyses of similar
problems (Shannon and Wilson, Inc., and Wdl844)).

Forslope stability analysis, probabilities of failure calculated for the

two example problems were considerably lower than those for seepage
analysis. This is also consistent with previous studies on similar
problems (Shannon and Wilson, Inc., and Wdi94)). In general,
floodwater elevation does not significandlifect the probability of slope
failure except for pervious levees where through-seepage may induce
slope instability.

Forthrough-seepageanalysis, further review of available deterministic
analysis models is required. For the example analyses herein, an adapta-
tion of Rock Island procedures was used to illustrate a probabilistic
approach. However, the procedure used is based on criteria for condi-
tions at which the construction of berms is reaeended, and does not
represent a true limit state or condition where erosion may result in levee
failure.

Forsurface erosion a conceptual example was presented based on
average current velocities determined from a simplified Manning equa-
tion and an assumed scour velocity. For actual levees under study,
better characteriziain of the actual current velocity can likely be

obtained from existing hydraulic models used by the Corps, and a better
characterizapn of the critical velocity that will induce damaging scour
can also likely be developed. Furthermore, the occurrence of damaging
scour does not necessarily imply that levee failure will occur, and some
adjustment of results may be necessary to account for this.

Surface erosioncan also be induced by wave attack. A similar analyti-
cal model should be developed for this condition, which was beyond the
scope of the present effort.

Engineering judgmentregarding the probability of failufer modes

other than those analyzedcan be incorporated into the analysis so long
as it can be quantified. For example, deficiencies such as cracks or
animal burrows observed in a field inspection can be included by having
the engineer assign judgmental probabilffaslure functions

reflecting observed conditions.

As a first approximation, the several conditional probabilitjadure
functions for the considered performance modes were combined assum-
ing independenceof performance modes and functioning aedes

system However, there is undoubtedly some correlation between some

28 May 99
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modes; for example, through-seepage and slope stability, which should
be considered in further development of the methodology.

Each analysis presented herein was basedsmygke formulation of the
problem (e.g., a defined set of random variables and the performance function
used with the Taylor’s series method). In order to be in a position tmmezod
the best specific approaches for application in practice, further research and
refinement of these analyses are required to evaluate and compare a number of
alternative formulations in the probabilistic methods, the effect of various
assumptions, etc.

Incorporation otength effectsrequires further research. The example
analyses herein provide the combined probability of failure function for a two-
dimensional levee cross section representative of an unspecified length. Sections
very close to the analyzed section will be highly correlated with that section, and
hence the analyzed section can be considered to model some equivalent “statis-
tically homogeneous” length of levee. Sections at some distance can be con-
sidered to represent another equivalent length of levee. The entire levee length
can then be considered as a chain, with each equivalent section an independent
link. Probabilistic techniques are readily available to analyze such a system once
the number and size of links and the distribution of their probabilities of failure
are determined; however, much work remains to be done in developing
methodology for that specific step.

Recommendations

To continue development and irepientaibn of a probabilistic approach to
assessment of existing levees, the following activities arenreeaded:

a. Development and revision of softwargto enhance practitioners’
capability to fit probability distribution or moments to random variables,
and to perform probabilistic seepage and stability analysis.

b. Additional research, with examples similar to those heredm, a wider
range of levee conditiongnd consideringnd testing possible
alternative approachesin characteriing variables, defining
performance functions, calculating probabilistic moments, etc.

c. Additional research on length effects and spatial correlatiorffects,
as previously described.

d. Initial research on the probabilistic frequency and categorization of
levee performanceproblems, to begin calibration of developed
procedures against observed performance.

e. Training of geotechnical engineers expected to use the developed
methodology.
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Annex A
Brief Review of Probability and
Reliability Terms and Concepts

Introduction

The objective of this annex is to introduce some basis elememginéering
reliability analysis applicable to geotechnical structures for various modes of
performance. These reliability measures are intended to be sufficiently consistent
and suitable for application to economic analysis of geotechnical structures of
water resource projects. References are provided which should be consulted for
detailed discussion of the principles of reliability analyses.

Traditionally, evaluations of geotechnical adequacy are expressed by safety
factors. A safety factor can be expressed as the ratio of capacity to demand. The
safety concept, however, has shortcomings as a measure of the relative reliability
of geotechnical structures for different performance modes. A primary deficiency
is that parameters (material properties, strengths, loads, etc.) must be assigned
single, precise values when the appropriate values may in fact be uncertain. The
use of precisely defined single values in an analysis is known dstereninistic
approach. The safety factor using this approach reflects the condition of the
feature, the engineer's juelgent, and the degree of conservatism incorporated
into the parameter values.

Another approach, therobabilisticapproach, extends the safety factor
concept to explicitly incorporate uncertainty in the parameters. This uncertainty
can be quantified through statistical analysis of existing data cerjuetgally
assigned. Even if judgnentally asgned, the probabilistic results will be more
meaningful than a deterministic analysis because the engineer provides a measure
of the uncertainty of his or her jugilgient in eachgrameter.
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Reliability Analysis Principles
The probability of failure

Engineering reliability analysis is concerned with findingrédebility R or
theprobability of failurePr(f) of a feature, structure, or system. As a system is
considered reliable unless it fails, the reliability and probability of failure sum to
unity:

R+Prf)=1 (A1)
R=1- Pr() (A2)
PrH=1-R (A3)

In the engineering reliability literature, the tefailure is used to refer to any
occurrence of an adverse event under consideration, including simple events such
as maintenance items. To distinguish adverse but noncatastrophic events (which
may require repairs and associated expenditures) from events of catastrophic
failure (as used in the dam safety context), the probability of unsatisfactory
performancePr(U) is sometimes used. An example would be slope stability
where the safety factor is below the required minimum safety factor but above
1.0. Thus for this case, reliability is defined as:

R =1- Pr(U) (A4)

Contexts of reliability analysis
Engineering reliability analysis can be used in several generaktainte

a. Estimation of the reliability of a new structure or system upon its
construction and first loading.

b. Estimation of the reliability of an existing structure or system upon a
new loading.

c. Estimation of the probability of a part or system surviving for a given
lifetime.

Note that the third context has an associated time interval, whereas the first two
involve measures of the overall adequacy of the system in response to a load
event.

Reliability for the first two contes can be calculateding thecapacity-
demand modednd quantified by theeliability indexp. In the capacity-demand
model, uncertainty in the performance of the structure or system is taken to be a
function of the uncertainty in the values of varioasgmeters used in calculating
some measure of performance, such as the factor of safety.
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In the third context, reliability over a future time interval is calculated using
parameters developed from actual data on the lifetimes or frequencies of failure
of similar parts or systems. These are usually taken to follow the exponential or
Weibull probability distributions. This methodology is well-established in
electrical, mechanical, and aerospaugimeering, where parts and components
routinely require periodic reptament. This approachqgatuces dazard function
which defines the probability of failure in any time period. These functions are
used in economic analysis of proposed geotechnical iraprents.

For reliability evaluation of most geotechnical structures, in particular
existing levees, the capacity-demand model will be utilized, as the question of
interest is the probability of failure related to a load event rather than the
probability of failure within a time interval.

Reliability Index

The reliability index is a measure of the reliability of an engineering system
that reflects both the mechanics of the problem and the uncertainty in the input
variables. This index was developed by the structural engineering profession to
provide a measure of comative reliabity without having to assume or
determine the shape of the probability distributienessary to calculate an exact
value of the probability of failure. The reliability index is defined in terms of the
expected value and standard deviation of the performance function, and permits
comparison of reliability among different structures or modes of performance
without having to calculate absolute probability values. Calculating the reliability
index requires:

a. A deterministic model (e.g., a slope stability analysis procedure).
b. A performance function (e.g., the factor of safety from UTEXAS2).

c. The expected values and standard deviations ofateaneters taken as
random variables (e.d=] ¢] and a¢).

d. A definition of the limit state (e.gin(FS) = 0).
e. A method to estimate the expected value and standard deviation of the

limit state given the expected values and standard deviations of the
parameters (e.g., the Taylor's series or point estimate methods).

Accuracy of Reliability Index

For rehabilitation studies of geotechnical structures, the reliability index is
used as a “relative measure of reliability or confidence in the ability of a structure
to perform its function in a satisfactory manner.”
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The analysis methods used to calculate the reliability index should be
sufficiently accurate to rank the relative reliability of various structures and
components. However, reliability index values are not absolute measures of
probability. Structures, components, and performance modes with higher indices
are considered more reliable than those with lower indices. Experience analyzing
geotechnical structures will refine these techniques.

The Capacity-Demand Model

In the capacity-demand model, the probability of failure or unsatisfactory
performance is defined as the probability that the demand on a system or
component exceeds the capacity of the system or component. The capacity and
demand can be combined into a single functiba performance functionand
the event that the capacity equals the demand taken lasitretate Reliability
Ris the probability that the limit state will not be achieved or crossed.

The concept of the capacity-demand model is illustrated for slope stability
analysis in Figure Al. Using the expected value and standard deviation of the
random variables ¢ anflin conjunction with the Taylés series method or the
point estimate method, the expected value and standard deviation of the factor of
safety can be calculated. If it is assumed that the factor of safety is lognormally
distributed, then the natural log of the factor of safety is normally distributed.

AN

(o) f(c)

Bo, .o - EINFS]

f(InFS)

In(FS)

Figure Al. The capacity-demand model
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The performance function is taken as the log of the factor of safety, and the limit
state is taken as the conditioiFS) = 0. The probability of failure is then the
shaded area corresponding to the condIfigRS) < 0. If it is assumed that the
distribution onin(FS) is normal, then the probability of failure can be obtained
using standard statistical tables.

Equivalent performance functions and limit states can be defined using other
measures, such as the exit gradient for seepage.

The probability of failure associated with the reliability index jpabability
per structureit has no time-frequency basis. Once a structure is constructed or
loaded as modeled, it either performs satisfactorily or not. Nevertheles, the
value calculated for an existing structure provides a rational aatiype
measure.

Steps in a Reliability Analysis Using the Capacity-
Demand Model

As suggested by Figure Al for slope stability, a reliability analysis includes
the following steps:

a. Important variables considered to have sufficient inherent uncertainty
are taken as random variables anarahterized by their expected
values, standard deviations, and correlation coefficients. In concept,
every variable in an analysis can be modeled as a random variable as
most properties and parameters have some inherent variability and
uncertainty. However, a few specific random variables will usually
dominate the analysis. Including additional random variables may
unnecessarily increase computational effort without significantly
improving results. When in doubt, a few analyses with and without
certain random variables will quickly illustrate which are significant, as
will the examination of variance terms in a Taylor's series analysis. For
levee analysis, significant random variables typically include material
strengths, soil permeability or permeability ratio, and thickness of top
stratum. Material properties such as soil density may be significant, but
where strength and density both appear in an analysis, strength may
dominate. An example of a variable that can be represented
deterministically (non-random) is the density of water.

b. A performance function and limit state are identified.

c. The expected value and standard deviation of the performance function
are calculated. In concept, this involves integrating the performance
function over the probability density functions of the random variables.
In practice, approximate values are obtained using the expected value,
standard deviation, and correlation coefficients of the random variables
in the Taylor's series method or the point estimate method.
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d. The reliability index3 is calculated from the expected and standard
deviation of the performance function. The reliability index is a measure
of the distance between the expected value a@iB)or In (FS) and the
limit state.

e. If a probability of failure value is desired, a distribution is assumed and
Pr(f) is calculated.

Random Variables

Description

Parameters hing significance in the analysis and some significant uncer-
tainty are taken asndom variables.Instead of having precise single values,
random variables assume a range of values in accordancepsihatbility
density functioror probability distribution The probability distribution quanti-
fies the likelihood that its value lies in any given interval. Two commonly used
distributions, the normal and the lognormal, are described later in this appendix.

Moments of random variables

To model random variables in the Taylor's series or point estimate methods,
one must provide their expected values and standard deviations, which are two of
several probabilistimomentof a random variable. These can be calculated
from data or estimated from experience. For random variables which are not
independent of each other, but tend to vary together, correlation coefficients must
also be assigned.

Mean value. Themeanvalue |4 of a set dff measured values for the
random variabl& is obtained by summing the values and dividinguby

2% (A5)

Expected value Theexpected valug[X] of a random variable is the mean
value one would obtain if all possible values of the random variable were multi-
plied by their likelihood of occurrence anchsmed. Where a mean value can be
calculated from representative data, it provides an unbiased estimate of the
expected value of a parameter; hence, the mean and expected value are numeri-
cally the same. The expected value is defined as:

E[X]=Hy = f Xf (X)dx~Y_ Xp(X) (AB)
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wheref(X) is theprobability density functionf X (for continuous random
variables) ang(X,) is the probability of the valug (for discrete random
variables).

Variance. ThevarianceVar[X] of a random variablX is the expected value
of the squared difference between the random variable and its mean value.
Where actual data are available, the variance of the data can be calculated by
subtracting each value from the mean, squaring the result, and determining the
average of these values:

Varl - EX 1] - X o0 - 2= 1 (A7)

The summation form above involving theterm provides the variance of a
population containing exact elements. Usually, sampleof sizeN is used to
obtain arestimate of the varianaaf the associated random variable which
represents aantire populatiorof items or continuum of material. To obtain an
unbiased estimate of the population working from a finite sampl&| ihe
replaced bN-1:

D106 - 107

Vai X = N1

(A8)

Standard deviation To express the scatter or dispersion of a random
variable about its expected value in the same units as the random variable itself,
thestandard deviatiors taken as the square root of the variance; thus:

ox=yVaiX] (A9)

Coefficient of variation. To provide a convenient dimensionless expression
of the uncertainty inherent in a random variable, the standard deviation is divided
by the expected value to obtain teefficient of variationwhich is usually
expressed as a percent:

o
V, =—=_x100% Al
X ax] 0 ( O)

The expected value, standard deviation, and coefficient of variation are inter-
dependent: knowing any two, the third is known. In practice, a convenient way to
estimate moments for parameters where little data are available is to assume that
the coefficient of variation is similar to previously measured values from other
data sets for the same parameter.
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Correlation

Pairs of random variables may be correlated or independent; if correlated, the
likelihood of a certain value of the random variabdepends on the value of the
random variablX. For example, the strength of sand may be correlated with
density or the top blanket permeability may be correlated with grain size of the
sand. Theovarianceis analogous to the variance but measures the combined
effect of how two variables vary together. The definition of the covariance is:

CoX,Y] = E[(X-p)(Y-y)] (A11)
which is equivalent to:
CovX Y] = [ [(X-p)(Y-p)f(X,Y)dYdX (A12)

In the above equatioh(X, Y) is the joint probability density function of the
random variableX andY. To calculate the covariance from data, the following
equation can be used:

CoXY] - ;Z (XK CY;Hy) (A13)

To provide a nondimensional measure of the degree of correlation bétaadn
Y, thecorrelation coefficienp ,, ., is obtained by dividing the covariance by the
product of the standard deviations:

gy - SO (A14)

0x0vy

The correlation coefficient may assume values from -1.0 to +1.0. A value of
1.0 or -1.0 indicates there is perfect linear correlation; given a vakieué
value ofY is known and hence is not random. A value of zero indicates no linear
correlation between variables. A positive value indicates the variables increase
and decrease together; a negative value indicates that one variable decreases as
the other increases. Pairsimflependentandom variables have zero correlation
coefficients.

Probability Distributions
Definition

The termgprobability distribution probability density function, pdébr the
notationf,(X) refer to a function that defines a continuous random variable. The
Taylor's series and point estimate methods described herein to determine
moments of performance functions require only the mean and standard deviation
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of random variables and their correlation coeffitseknowledge of the form of

the probability density function is noecessary. However, in order to ensure that
estimates made for these moments are reasonable, it is recommended that the
engineer plot the shape of the normal or lognormal distribution which has the
expected value and standard deviation assumed. This can easily be done with
spreadsheet software.

Figure Al illustrated probability density functions for the random variables
and¢. A probability density function has the property that for dnhe value of
f (X) is proportional to the likelihood of. The area under a probability density
function is unity. The probability that the random variables between two
valuesX; andX, is the integral of the probability density function taken between
the two values. Hence:

X,
Pr (X, <X<X,) = [f(9dx (A15)
X

1

Thecumulative distribution functio@DF or F, (X) measures the integral of
the probability density function from minus infinity Xo

X
F®) = [f(X)dx (A16)

Thus, for any valu¥, F, (X) is the probability that the random variallés less
than the giverx.

Estimating Probabilistic Distributions

A suggested method to assign or check assumed moments for random
variables is to:

a. Assume trial values for the expected value and standard deviation and
take the random variable to be normal or lognormal.

b. Plot the resulting density function and tabulate and plot the resulting
cumulative distribution function (spreadsheet software is a convenient
way to do this).

C. Assess the reasonableness of the shape of the pdf and the values of the
CDF.

d. Repeat the above steps with successively improved estimates of the

expected value and standard deviation until an appropriate pdf and CDF
are obtained.
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Normal distribution
Thenormal or Gaussiandistribution is the most well-known and widely

assumed probability density function. It is defined in terms of the meand
standard deviatiop, as:

fX(X) _ 1 eX[{ (X7 My

(A17)

2
04/27 20},

When fitting the normal distribution, the mean of the distribution is taken as the
expected value of the random variable. The cumulative distribution function for
the normal distribution is not conveniently expressed in closed form but is widely
tabulated and can be readily computed by numerical approximation. It is a built-
in function in most spreadsheet programs. Although the normal distribution has
limits of plus and minus infinity, values more than 3 or 4 standard deviations
from the mean have very low probability. Hence, one empirical fitting method is
to take minimum and maximum reasonable values to be at approximately +3
standard deviations. The normal distribution is commonly assumedreceh

terize many random variables where the coefficient of variation is less than about
30 percent. For levees, these include soil density and drained friction angle.
Where the mean and standard deviation are the only information known, it can be
shown that the normal distribution is the most unbiased choice.

Lognormal distribution

When a random variabkis lognormally distributed, its natural logarithm,
In X/ is normally distributed. The lognormal distribution has several properties
which often favor its selection to model certain random variables in engineering
analysis:

a. AsXis positive for any value dh X, lognormally distributed random
variables cannot assume values below zero.

b. It often provides a reasonable shape in cases where the coefficient of
variation is large ( >30 percent ) or the random variable may assume
values over one or more orders of magnitude.

c. The central limit theorem implies that the distribution of products or
ratios of random variables approaches the lognormal distribution as the
number of random variables increases.

If the random variablX is lognormally distributed, then the random variable
Y =1In Xis normally distributed with parametdtfY] = E[In X] and g, = ¢,,«. TO
obtain the parameters of the normal random varigtiest the coefficient of
variation ofX is calculated:
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Ox

Vv, - X
=P

(A18)

The standard deviation #fis then calculated as:

Oy = O = y/IN(1+ V2) (A19)

The standard deviatian is in turn used to calculate the expected valoé of
02
EY] - §InX] - InE[X] f% (A20)

The density function of the lognormal variates:

1 1( InX-E[Y]\?
fOQ = -
* Xoy\/Z_neX[{ 2[ oy H (2D

The shape of the distribution can be plotted from the above equation. Values on
the cumulative distribution function féfcan be determined from the cumulative
distribution function ofY (E[Y], &) by substituting th& in the expressioM =

In X

Calculation of the Reliability Index

As illustrated in Figure A2, a simple definition of the reliability index is based
on the assumption that capacity and demand are normally distributed and the
limit state is the event that their difference, the safety m&gszero. The ran-
dom variabléSis then also normally distributed and the reliability index is the
distance by whick[S exceeds zero in units of:

5:5 _ HC-DJ

g /=0é 2 (A22)

An alternative formulation (also shown in Figure A2) implies that cap@aiyd
demand are lognormally distributed random variables. In this cks€,and
In D are normally distributed. Defining the factor of saféas the rati&/D,
thenln FS= (In C) - (In D) andIn FSis normally distributed. Defining the
reliability index as the distance by whichFSexceeds zero in terms of the
standard deviation &f FS it is:

B- HInC-InD] _HIn(C/D)| HInFY

Onc-InD) Oncip) OinFs

(A23)
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Figure A2. Alternative definitions of the reliability index

From the properties of the lognormal distribution, the expected vallué€of
is:

EinC] - InE{C)-Zofc (A24)
where:
Y (A25)

Similar expressions apply &InD] and g, -

The expected value of the log of the factor of safety is then:
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HInFS - InEC] - InE[D] f%ln[1+vcz]+%ln[l+v;] (A26)

As the second-order terms are small when the coefficients of variation are not
exceedingly large (below approximately 30 percent), the equation above is
sometimes approximated as:

E[InFS]zInE[C]InE[D]In[%] (A27)

The standard deviation of the log of the factor of safety is obtained as:

2 2
Olnrs™y OInc*OinD (A28)

Olnrs = \/I n[1+VCZ] +In[1+V§] (A29)

Introducing an approximation,
In[1+VZ] = V& (A30)

the reliability index for lognormally distributéd D, andFS and normally
distributedn C, In D, andin FScan be expressed approximately as:

Blr{j—gjl (A31)

‘/VCZJrV;

The exact expression is:

n E[Cly1+V5
i E[D]y/1+VE (A32)
YN+ Inf1+Vp]

B

For many geotechnical problems and related deterministic computer programs,
the output is in the form of the factor of safety, and the capacity and demand are
not explicitly separated. The reliability index must be calculated from values of
E[F] and g5 obtained from multiple runs as later described in the next section.
In this case, the reliability index is obtained using the following steps:

Oks

Vs gy (A33)
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Ojpes = /1N (11V) (A34)

E[INFY = INE[FY %ln(hvﬁs) (A35)
g EIFY In[E[FS}/\/hVFZS} (A36)

Ors ‘/|ni1+\/':2 )

Integration of the Performance Function

Methods such as direct igtation, Talor's seriespoint estimate methods,
and Monte Carlo simulation are available for calculgtiite mean and standard
deviation of theperformance function. For direct igtation, the mean value of
the function is obtainedybintegrating over theprobability densiy function of the
random variables. A brief degatibn of the other methods follows. The Refer-
ences section that follows the main text of thimreshould be consulted for
additional information.

The Taylor 's series method

The Ta/lor's series method is one of several methods to estimate the moments
of aperformance function based on moments of thetirmandom variables [see
Harr (1987)]. It is based on aylar's series gxansion of thgerformance
function about somgoint. For the Cqrs’ navigation rehabilitation studies, the
expansion igperformed about the pected values of the random variables. The
Taylor's series method is termed a first-order, second-moment (FOSM) method,
as ory first-order (linear) terms of the series are retained aydfoaffirst two
moments (mean and the standard deviation) are considered. The method is
summarized below and illustrategd én exarple in Annex B.

Independent random variables. Given a functiorY = g(X;, X, ... X,), where
all X; are indpendent, the goected value of the function is obtaingd b
evaluatim the function at the @ected values of the random variables:

EY] = oEX.}EX,)-- BX) (A37)

For a function such as the factor of sgfthis inplies that the gxected value
of the factor of safgtis calculated usmthe exyected values of the random
variables:

HFS - FSEd.[Ec | Hya)-) (A38)
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The variance of thperformance function is taken as:

VaiY] -3

aY)?
(&] VarX

(A39)

with thepartial derivatives taken at thepansionpoint (in this case the mean or
expected value). Usinthe factor of safgtas an exapie performance function,
the variance is obtained finding thepartial derivative of the factor of safet
with regpect to each random variable evaluated at theated value of that
variable, guaring it, multiplying it by the variance of that random variable, and
summirg these terms over all of the random variables:

valFg =} (A40)

oFS)?
(RJ VarX

The standard deviation of the factor of safetthen simly the gjuare root of the
variance.

Having the eyected value and variance of the factor of gafbe reliability
index can be calculated as described earlier in this annex. Agksofahe
Taylor's Series method include the follogin

a. The relative mgnitudes of the terms in the above summapiamvide an
explicit indication of the relative contribution of uncertgif each
variable.

b. The method is exact for lineperformance functions.
Disadvantges of the Tgor's Series method include the follogin
a. Itis necessarto determine the value of derivatives.

b.  The nglect of hpher-order terms introduces errors for nonlinear
functions.

The rejuired derivatives can be estimated numesjidaflevaluatimg the
performance function at twaoints. The function is evaluated at one increment
above and below the pacted value of the random varialfleand the difference
of the results is dividedytthe difference between the two valuexiof Although
the derivative at point is mosfprecisey evaluated usipa vely small increment,
evaluatim the derivative over a rga of +1 standard deviation snhetter cature
some of the nonlinear behavior of the function over gerahlikely values. Thus,
the derivative is evaluated ugithe followirg goproximation:
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aY Q(E[XI +°x> g(E[X1 °x>

X 20X

(A41)

When the above expression is squared and multiplied by the variance, the
standard deviation term in the denominator cancels the variance, leading to

2

Y2 \arx
( RJ VarX = (A42)

gx.) 9x)
2

whereX, andX are values of the random variable at plus and minus one standard
deviation from the expected value.

Correlated random variables. Where random variables are correlated,
solution is more complex. The expression for the expected value, retaining
second-order terms is:

- B ) 55 S oo (a4

However, in keeping with the first-order approach, the second-order terms are
generally neglected, and the expected value is calculated the same as for
independent random variables.

The variance, however, is taken as:

[5—;) 2Var)§

where the covariance part contains terms for each possible combination of
random variables.

variY] -} XX

2 [ Y NV \(xx,)} (A44)

The Point Estimate Method

An alternative method to estimate moments of a performance function based
on moments of the random variables ispgbmt estimate methodPoint estimate
methods are procedures where probability distributions for continuous random
variables are modeled by discrete “equivalent” distributions having two or more
values. The elements of these discrete distributionzo{ot estimatéshave
specific values with defined probabilities such that the first few moments of the
discrete distribution match that of the continuous random variable. Having only a
few values over which to integrate, the moments of the performance function are
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easily obtained. A simple and straightforward point estimate method has been
proposed by Rosenblueth (1975, 1981) and is summarized by Harr (1987). That
method is briefly summarized below and illustrated by example in Annex B.

Independent random variables

As shown in Figure A3, a continuous random varixikrepresented by two
point estimatesy, andX, with probability concentratiorf3, andP, respectively.
As the two point estimates and their probability concentrations form an
equivalent probability distribution for the random variable, theRwalues must
sum to unity. The two point estimates and probability concentrations are chosen
to match three moments of the random variable. When these conditions are
satisfied for symmetrically distributed random variables, the point estimates are
taken at the mean +1 standard deviation:

F(X)

X
Figure A3. Point estimate method
X, = E[Xi]+ Oxi (A45)
X = E[X] - ox, (A46)

For independent random variables, the associated probability concentrations are
each one-half:

P,.=-P,_=0.50 (A47)

Knowing the point estimates and their probability concentrations for each
variable, the expected value of a function of the random variables raised to any
powerM can be approximated by evaluating the function for each possible
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combination of the point estimates (eXg.., %. , %. , X.), multiplying each
result by the product of the associated probability concentrations
(e.9.,P... =P, P,- B) and summing the terms. For example, two random
variables result in four combinations of point estimates and four terms:

E[Y M] - P++ g(xl+‘ X2+)M * P+ - g(xl+‘ XZf)M * Pf + g(xlf‘ X2+ )M * Pf* g(X]_J XZ—)M (A48)

For N random variables, there @®combinations of the point estimates &d
terms in the summation. To obtain the expected value of the performance
function, the functiomy(X,, X)) is calculate@" times using all the combinations

and the exponemtl in Equation A48 is 1. To obtain the standard deviation of the
performance function, the exponent M is taken as 2 and the squares of the
obtained results are weighted and summed to oBfsfth The variance can then
be obtained from the identity

varY] - E[YZ- (EY)? (A49)

and the standard deviation is the square root of the variance.

Correlated random variables

Correlation between symmetrically distributed random variables is treated by
adjusting the probability concentratiofs#t .... £). A detailed discussion is
provided by Rosenblueth (1975) and summarized by Harr (1987). For certain
geotechnical analyses involving lateral earth pressure, bearing capacity of shallow
foundations, and slope stability, often only two random variablesdg¢ or tan
¢) need to considered as correlated. For two correlated random variables within a
group of two or more, the product of their concentrations is modified by adding a
correlation term:

P- =Py = (PP -5 (A50)
P, =P-= (P|+)(P]+) *% (A51)

Monte Carlo simulation

The performance function is evaluated for many possible values of the
random variables. A plot of the results will produce an approximation of the
probability distribution. Once the probability distribution is determined in this
manner, the mean and standard deviation of the distribution can be calculated.
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Determining the Probability of Failure

Once the expected value and standard deviation of the performance function
have been determined using the Tag@eries or point estimate methods, the
reliability index can be calculated as previously described. If the reliability index
is assumed to be the number of standard deviations by which the expected value
of a normally distributed performance function (drfFS)) exceeds zero, then
the probability of failure can be calculated as:

Pr(f) = () - ¥(-2) (A52)

wherey(-2) is the cumulative distribution function of the standard normal
distribution evaluated at,-which is widely tabulated and available as a built-in
function on modern microcomputer spreadsheet programs.

Overall System Reliability

Reliability indices for a number of components or a number of modes of
performance may be used to estimate the overall reliability of an embankment.
There are two types of systems that bound the possible cases, the series system
and the parallel system.

Series system

In a series system, the system will perform unsatisfactorily if any one
component performs unsatisfactorily. If a systenmha@mponents in series, the
probability of unsatisfactory performance of the ith compongntaad its
reliability, R = 1 -p, then the reliability of the system, or probability that all
components will perform satisfactorily, is the product of the component

reliabilities.
R=RRR,..R...R,
=@ -p)L-p)L-p)...A-p)...(L-p) (AS3)

Simple parallel system

In a parallel system, the system will only perform unsatisfactorily if all
components perform unsatisfactorily. Thus, the reliability is unity minus the
probability that all components perform unsatisfactorily, or

R-=1- P1PP5- - By By, (A54)
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Parallel series systems

Solutions are available for systems requiriayit-of-n operable components,
which may be applicable to problems such as dewatering with multiple pumps,
wherer is defined as the number of reliable units. Subsystems involving
independent parallel and series systems can be mathematically combined by
standard techniques.

Upper and lower bounds on system reliability can be determined by
considering all components to be from subgroups of parallel and series systems,
respectively; however, the resulting bounds may be so broad as to be impractical.
A number of procedures are found in the references to narrow the bounds.

Engineering systems such as embankments are complex and have many
performance modes. Some of these modes may not be independent; for instance
several performance modes may be correlated to the occurrence of a high or low
pool level. Rational estimation of the overall reliability of an embankment is a
topic that is beyond the scope of this report.

A practical approach

The reliability of a few subsystems or components may govern the reliability
of the entire system. Thus, developing a means to characterize and compare the
reliability of these components as a function of time is sufficient to make
engineering judgements to prioritize operations and maintenance expenditures.

For initial use in reliability assessment of geotechnical systems, the target
reliability values presented in the following section should be used. The
objective of a rehabilitation program would be to keep the reliability index for
each significant mode above the target value for the foreseeable future.

Target Reliability Indices

Reliability indices are a relative measure of the current condition and provide
a qualitative estimate of the expected performance. Embankments with relatively
high reliability indices will be expected to perform their function well.
Embankments with low reliability indices will be expected to perform poorly and
present major rehabilitation problems. If the reliability indices are very low, the
embankment may be classified as a hazard. The target reliability values shown in
Table Al should be used in general.



Table Al

Target Reliability Indices

Expected Performance Level Beta Probability of Unsatisfactory Performance
High 5 0.0000003

Good 4 0.00003

Above average 3 0.001

Below average 25 0.006

Poor 2.0 0.023

Unsatisfactory 1.5 0.07

Hazardous 1.0 0.16

Note: Probability of unsatisfactory performance is the probability that the value of performance
function will approach the limit state, or that an unsatisfactory event will occur. For example, if the
performance function is defined in terms of slope instability, and the probability of unsatisfactory
performance is 0.023, then 23 of every 1,000 instabilities will result in damage which causes a
safety hazard.
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Annex B
Example Calculations of
Functions of Random Variables

In this annex, example calculations are provided for three approaches for
defining the expected value and standard deviation of a function given the
expected values and standard deviations of the input variables.

Problem Statement

The example function considered is the permeability katik, used in levee
underseepage analysis. Note that it could just as well be a performance function,
such as the factor of safety in a slope stability analysis. For simplicity of notation,
let the permeability ratio be denotedP&s$ thus:

PR- i
I (B1)

wherek; is the horizontal permeability of the pervious substratumkgasdhe
vertical permeability of the semipervious top stratum.

Given the following:

E[k] = 1000x 10 cmisec Elk] = 1x10“cmisec (B2a)
o = 300x10“cmisec 0 = 0.3x10™cmisec (B2b)
Vs = Vi, = 30% (B2c)

It is desired to estimat§ PR, g, andVps
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Taylor's Series with Exact Derivatives

The expected value of the function, retaining only first-order terms, is the
function of the expected values:

E[PR = PRE[k] Elk]) =

1000x 10
XL - 1000 (B83)

1x10

As the derivatives of the function are easily obtained, the exact derivatives can be
used to calculate the variance. The variance of the permeability ratio is:

VarPR] = (%?) Zoif + (%] 20%0 (B4a)
2
VarPR - (%] o2 (iz] o2 (B4b)

The derivatives are evaluated at the expected values of the random variables,
giving:

2 -1)\2
VaiPR - 1 (300 x 1042 + 107 (0.3 x 10%? (B5a)
10 -10°8
VarlPR] = 90,000 + 90,000 = 180,000 (B5b)
opr = vVaiPR = /180,000~ 424 (B5c)

The coefficient of variation of the permeability ratio is then:

Vog = | =22 | = 224 _ 43494 (B6)
EPR) 1000

Taylor's Series with Numerically Approximated
Derivatives

Where derivatives are difficult to precisely calculate, a finite difference
approximation can be used, approximating the derivatives using two points, one
standard deviation above and below the expected value of each random variable.
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The expected value of the function, retaining only first-order terms, is the
function of the expected values:

E[PR - PRELK].Elky) - 10100—1;?“ - 1000 ®7)

The variance term

2 2
VarPR - (%{] o + (%{] o (B9)

can be expressed using finite difference approximations of the derivatives as:

2 2
VarPR - [ PRK.) PF{kf-)) o + [ PRK,.) PR(kb—)] 2

20 2oy Kb (B9)

wherePRK;,) refers to the permeability ratio evaluated Wijttaken one standard
deviation above the expected value, ke E[k] + g, and the expected value

of the other random variables are used. The other terms are developed similarly.
Substituting, one obtains

2 2
varpr _ | PRk - PR(kf_)) 2 [ PR(K,.) - PR(kb_)] 2

i kb
20, 20,

1300 x 104 700 x 10%)?2

4 4
VarpR - | —1*10 1 x10% | 300 x 10%?2
600 x 10%
1000 x 10* 1000 x 10*)2 (B10)
4 4
N 1.3 x 10 0.7 x 10 (030 % 104)2
0.60 x 10%
Var[PR = 90,000+ 108,684
- 198,684
Opg = 4457
The coefficient of variation is then:
Y 4457
Vo, = —PR = - 44.6% B11
PR E[PR 1000 (B11)
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Point Estimate Method

Using the point estimate method, the permeability of the foundation is
represented by two point estimates and two probability concentrations:

k, = Ek] + o, = 1300 x 10%misec

k_ = Ek] + o, = 700 x 10%misec
(B12)
Py, = 0.50
Py = 0.50
Likewise, the top blanket permeability is modeled by
k. = Ek] + o, = 1.30 x 10%m'sec
k. = Ek] + o, = 0.70 x 10%m'sec
(B13)
Pep. = 0.50
P = 0.50
The expected value of the permeability ratio is then
E[PR = E PkftpkbtPRtt
all combinations
E[PR - 0.25PR.) + 0.25PR) + 0.25PR ) + 0.25fPR )
(B14)

E[PR =

1(1300 , 1300 700 , 700
40 1.3 0.7 1.3 0.7

- %(1000+ 1857.1+ 701.3 + 1000)

= 1139

Note that the expected value is higher than that found using the Taylor’s series
method as it picks up some of the nonlinearity of the function which was
neglected when the terms above the first order were neglected.

To find the variance, fir€[PR] is calculated:

E[PR? - 0.25PR%) + 0.25PR%) + 0.25PR%) + 0.25PR%)
E[PRY - %(100(52 . 1857.2 + 701.%3 + 10009) (B15)

= 1,485,200
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The variance is then calculated by the identity:

VarfPR = E[PR? - (E[PR)?
1,485,200~ 113¢ (B16)
187,879

and the standard deviation and coefficient of variation are:

Opg - VIBT,B79- 433

o 433
Vog = = = - 38%

E[PR 1139

(B17)

Note that the estimate of the standard deviation is similar to that for the two
Taylor’s series methods, but the coefficient of variation drops because the
expected value increased.



